#### DNA damage from first principles

#### Jorge Kohanoff

Atomistic Simulation Centre School of Maths and Physics Queen's University Belfast Northern Ireland UK

#### **CP2K UK Users Meeting**

London, 29<sup>th</sup> January 2014

#### Queen's University Belfast Northern Ireland







## The Atomistic Simulation Centre Queen's University Belfast, Northern Ireland



Tchavdar Todorov



Gareth Tribello



Daniel Dundas



Lorenzo Stella



Myrta Grüning



Jorge Kohanoff

# Contents

- Introduction
- Low-energy electrons
  - Electronic capture
  - C-O bond cleavage in nucleotides
  - Strand breaks in polynucleotides
  - Electronic capture in aminoacid-DNA
- Conclusions
- (Shock waves)

# Radiation damage of biological systems

- Radiation causes lesions to any biomolecule, especially DNA
  - Directly
    - o Ionization (X-rays, UV)
    - Impact fragmentation
  - Indirectly by generating reactive species
    - Low-energy electrons by ionization

• free radicals: e.g. OH' from water

o Thermo-mechanically

#### **Types of DNA Damage**

- Base Damage
- Single Strand Breaks
- Double Strand Breaks
- Clustered Damage



Low-energy electrons (1-20 eV) cause SSB and DSB in plasmid DNA

- B. Boudaïffa et al, Science 287, 1659 (2000)
- P. Swiderek, Angew. Chem. Int.. Ed. 45, 4056 (2006)



# **Multiscale phenomenon**

#### • Secondary electron generation (TDDFT-Ehrenfest)

- A. A. Correa, <u>J. Kohanoff</u>, E. Artacho, D. Sánchez-Portal, and A. Caro, Nonadiabatic forces in ion-solid interactions: the initial stages of radiation damage, Phys. Rev. Lett. 108, 213201 (2012).
- M. Ahsan Zeb, <u>J. Kohanoff</u>, D. Sánchez-Portal, A. Arnau, J. I. Juaristi, and E. Artacho, *Electronic stopping power in gold: The role of d electrons and the H/He anomaly*, Phys. Rev. Lett. 108, 225504 (2012).
- Inelastic transport (Beyond Ehrenfest)



- Capture/localization (Ground state DFT)
- Chemical stage: strand breaks (Ground state DFT)

• Radiobiololgical effects

. . .

# Damage due to low-energy electrons

#### Ab initio molecular dynamics simulations

- Quickstep module of **CP2K**
- Electronic structure via DFT (GGA-PBE + VDW, higher level)
- GTH pseudopotentials
- GPW method, TZVP-GTH basis set
- Up to 1,000 atoms and 10 ps (HECToR) 10,000 atoms
- Spin density shows excess (unpaired) electron

REALISTIC ENVIRONMENT + THERMAL FLUCTUATIONS
Increasingly large solvated DNA fragments

#### Molecular builder and visualiser: Aten (www.projectaten.org) by Tristan Youngs (RAL – former QUB)



It generates input files for many codes, e.g. quantum-espresso, Siesta, DL\_POLY, MOPAC, ... Do we want CP2K as well? (Ask Tristan)

#### Molecular builder and visualiser: Aten (www.projectaten.org) by Tristan Youngs (RAL – former QUB)











#### **Nucleobases: Thymine** First-principles Molecular Dynamics Simulations

M. Smyth and J. Kohanoff, Phys. Rev. Lett. 106, 238108 (2011)



# Nucleobases vs cavity Self-interaction



PBE

# Nucleobases vs cavity Self-interaction





## Nucleobases vs cavity Self-interaction



SIC a=0.8, b=0.5

### **Nucleotides: dTMP** First-principles constrained Molecular Dynamics

M. Smyth and J. Kohanoff, J. Am. Chem. Soc. 134, 9122 (2012)



**Excess electron still localized in the base** 

# **Strand breaks**

• Don't occur spontaneously

• Rare event

• **Constrained MD simulations**: stretch bond and compute free energy by integrating the potential of mean force. *Equilibration and statistics*.

#### **Nucleotides: dTMP** First-principles constrained Molecular Dynamics

M. Smyth and J. Kohanoff, J. Am. Chem. Soc. 134, 9122 (2012)



By stretching the  $C_{3'}$ - $O_{3'}$  phospodiester bond, the excess electron is transferred from the base to the sugar

### **Single Strand Breaks** C<sub>3'</sub>-O<sub>3'</sub> phosphodiester bond cleavage in nucleotides

M. Smyth and J. Kohanoff, J. Am. Chem. Soc. 134, 9122 (2012)





#### CoGderRieasehase

From Gas to Condensed Phase

- Barriers are about 5 kcal/mol ⇒ spontaneous SSB is feasible
- Environmental fluctuations are crucial to lower the barriers

#### **Nucleotides: dAMP** First-principles constrained Molecular Dynamics

M. Smyth and J. Kohanoff, J. Am. Chem. Soc. 134, 9122 (2012)



**Protonation** 

#### Protonation vs strand break in dCMP

M. McAllister, M. Smyth, G. Tribello, and J. Kohanoff (unpublished)



Experimentally, LEE in dAMP and dCMP do no lead to bond cleavage

#### Protonation vs strand break in dCMP

M. McAllister, M. Smyth, G. Tribello, and J. Kohanoff (unpublished)







- Are there specific sequences that favour strand breaks?
- Role of base pairing (duplex DNA)

# Trinucleotides TXT

Z. Li, P. Cloutier, L. Sanche and J. R. Wagner, JACS 132, 5422 (2010)



There are 4 possible bonds to break Experiment suggests  $1 (C_{3'}-O_{3'})$  for TTT

# Trinucleotides TTT

L. Bouëssel du Bourg, M. Smyth and J. Kohanoff (unpublished)



**Excess electron fluctuates between the three Thymines** 

# Trinucleotides TGT

L. Bouëssel du Bourg, M. Smyth and J. Kohanoff (unpublished)



**Excess electron fluctuates between the two Thymines** 

Self-interaction corrected approaches. Hybrids?

# **Metadynamics**



#### Which path will the system take? Constrain product of *switching functions* for the 4 bonds

PLUMED (www.plumed-code.org): interface with CP2K?

# Trinucleotides via metadynamicsTTvsTGT

L. Bouëssel du Bourg, M. Smyth, G. Tribello and J. Kohanoff (unpublished)



Strand breaks seem to occur in different places depending on sequence

# Towards reality: DNA in the nuclear cell environment





Does the proximity of histones protect DNA against electron attachment and radical attack? If so, how?

# A first attempt: The protective role of Glycine



S. Ptasinska, Z. Li, N. J. Mason and L. Sanche, Phys. Chem. Chem. Phys., 2010, 12, 9367



Bin Gu, M. Smyth and J. Kohanoff (unpublished): Thy in pure Gly

Depending on whether it is in the canonical or zwitterion form, Glycine can be more attractive than Thymine for electrons

#### Shock waves: nucleotide in water Alberto Fraile and JK (unpublished)



CP2K, v=10 km/s, single shock

#### Shock waves: nucleotide in water Alberto Fraile and JK (unpublished)



#### CP2K, v=10 km/s, MSST (Hugoniot)





Protons from dissociated water are free to react with the nucleotide





- Carbon ions must come closer than 10 A
- Only heavy ions produce damage via shock waves

# Summary

- When secondary electrons reach zero kinetic energy (vertical attachement), it localizes in the nucleobases in times≈15-25 fs.
- No time to create a cavity as in pure water (time scale ~1.5 ps)
- Nucleotides are stable in water, but excess electrons weaken the C-O (phosphodiester) bond between ribose and phosphate.
- At ambient conditions solvated nucleotides can spontaneously cleave (~5 kcal/mol barriers), thus leading to strand breaks, competing with protonation, which stabilizes the backbone.
- Tri- and tetra-nucleotides. Bond cleaved depends on sequence.
- Neighbouring aminoacids, as present in chromatin, can physically and chemically shield DNA, thus reducing the chances of damage.

# Wish list for CP2K

- Integrate the following features:
  - Molecular editor (e.g. aten)
  - Force field for MD equilibration
  - PLUMED for free energies
  - Force field fitting procedure(s)
- Further developments:
  - Real-time electron dynamics beyond Ehrenfest
  - Resonant electronic states
  - Radicals
- Manual !!
  - Tutorials linked to manual sections (e.g. HFX, QMMM, etc)

# Collaborators

- Maeve Smyth (QUB  $\rightarrow$  Cardiff)
- Lila Bouëssel du Bourg (ENS-Paris)
- Maeve McAllister (QUB)
- Gareth Tribello (QUB)
- Bin Gu (NUIST, China)









• Alberto Fraile (Madrid  $\rightarrow$  Crete)