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Parallel Programming Models 
• Why do we need parallelism at all? 

• Parallel programming is (even) harder than sequential 
programming 

• Single processors are reaching limitations 
•  Clock rate stalled at ~2.5 GHz (due to heat) 
•  Full benefits of vectorisation (SIMD) can be hard to realise 
•  Chip vendors focused on low-power (for mobile devices) 



Parallel Programming Models 
•  But we need more speed! 

•  Solve problems faster (strong scaling) 
•  Solve bigger problems in same time (weak scaling) 
•  Tackle new science that emerges at long runtimes / large system size 
•  Enables more accurate force models (HFX, MP2, RPA …) 

•  Need strategies to split up our computation between different 
processors 

•  Ideally our program should run P times faster on P processors - 
but not in practice! 
•  Some parts may be inherently serial (Amdahl’s Law) 
•  Parallelisation will introduce overheads e.g. communication, load 

imbalance, synchronisation… 



Parallel Programming Models 
“The performance improvement to be gained by parallelisation is limited 
by the proportion of the code which is serial” 

Gene Amdahl, 1967 



Parallel Programming Models 
• Almost all modern CPUs are multi-core 

•  2,4,6… CPU cores, sharing access to a common memory 

•  This is Shared Memory Parallelism 
•  Several processors executing the same program 
•  Sharing the same address space i.e. the same variables 
•  Each processor runs a single ‘thread’ 
•  Threads communicate by reading/writing to shared data 

• Example programming models include: 
•  OpenMP, POSIX threads (pthreads) 



Analogy 
• One very large whiteboard in a two-person office 

•  the shared memory 

•  Two people working on the same problem 
•  the threads running on different cores attached to the memory 

• How do they collaborate? 
•  working together 
•  but not interfering 

• Also need private data 

my 
data 

shared 
data 

my 
data 



Hardware 

Memory 

Processor 

Shared Bus 

Processor Processor Processor Processor 

• Needs support of a shared-memory architecture 



Parallel Programming Models 
• Most supercomputers are built from 1000s of nodes 

•  Each node consists of some CPUs and memory 
•  Connected together via a network 

•  This is Distributed Memory Parallelism 
•  Several processors executing (usually) the same program 
•  Each processor has it’s own address space 
•  Each processor runs a single ‘process’ 
•  Threads communicate by passing messages 

• Example programming models include: 
•  MPI, SHMEM 



Analogy 
•  Two whiteboards in different single-person offices 

•  the distributed memory 

•  Two people working on the same problem 
•  the processes on different nodes attached to the interconnect 

• How do they collaborate? 
•  to work on single problem 

• Explicit communication 
•  e.g. by telephone 
•  no shared data 

my 
data 
 

my 
data 
 



Hardware 

• Natural map to 
distributed-memory 
•  one process per 

processor-core 
•  messages go over 

the interconnect, 
between nodes/OS’s  
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Parallel Programming Models 
• Support both OpenMP or MPI (ssmp and popt) 

•  Use OpenMP for desktop PCs with multi-cores or 
•  MPI for clusters and supercomputers 
•  Maybe also support for Accelerators (GPUs) 

• May also combine MPI and OpenMP (psmp) 
•  Called hybrid or mixed-mode parallelism 
•  Use shared memory within a node (with several processors) 
•  Use message passing between nodes 
•  Usually only useful for scaling to 10,000s of cores! 



CP2K Algorithms and Data Structures 
•  (A,G) – distributed 

matrices 
•  (B,F) – realspace 

multigrids 
•  (C,E) – realspace data 

on planewave 
multigrids 

•  (D) – planewave grids 

•  (I,VI) – integration/ 
collocation of 
gaussian products 

•  (II,V) – realspace-to-
planewave transfer 

•  (III,IV) – FFTs 
(planewave transfer) 



CP2K Algorithms and Data Structures 
• Distributed realspace grids 

•  Overcome memory bottleneck 
•  Reduce communication costs 
•  Parallel load balancing 

•  On a single grid level 
•  Re-ordering multiple grid levels 
•  Finely balance with replicated tasks 

  

Data layout in CP2K:
realspace grids (III)

Load balance work done on these grids!
Assign different regions of space at each level to the same MPI rank,
further balance on replicated grids 

1 2 3

654

7 8 9

Level 1, fine grid, distributed Level 2, medium grid, dist Level 3, coarse grid, replicated

5 6 8

713

9 4 2

grids are allocated on each process corresponding to their virtual ranks. There are a
number of changes required in the realspace to planewave transfer routines to ensure
that the reordered grid data is sent to the correct process for transferring to the plane
wave grid, but this is facilitated by the use of a pair of mapping arrays real2virtual

and virtual2real which are members of the real space grid data structure and are used
to convert between the two orderings as needed.

For the same problem as above, using the new load balancing scheme, the load on
the most overloaded process is reduced by 30%, and this is now only 3.5 times the load
of the least loaded process. For this particular problem it is not possible to find a perfect
load balance, as there is a single grid level block which has more load associated with
it than then total average load. It is possible to overcome this by setting up the grid
levels so that they are more closely spaced, and thus there is less load on each grid level.
However, this comes at an increased memory cost for the extra grid levels and also affects
the numerics of the calculation slightly (1 in 106). As shown in figures 5 and 6 if it is
possible to balance the load perfectly, then this algorithm will succeed.

After load_balance_distributed

Maximum load: 1165637

Average load: 176232

Minimum load: 0

After load_balance_replicated

Maximum load: 1165637

Average load: 475032

Minimum load: 317590

Figure 5: W216 load balance on 16 cores - perfect load balance achieved
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•  libgrid for 
optimised 
collocate/integrate 
routines 

•  ~5-10% speedup 
typical  



CP2K Algorithms and Data Structures 
•  Fast Fourier Transforms 

•  1D or 2D decomposition 
•  FFTW3 and CuFFT library interface 
•  Cache and re-use data 

•  FFTW plans, cartesian communicators 

• DBCSR 
•  Distributed MM based on Cannon’s 

Algorithm 
•  Local multiplication recursive, cache 

oblivious 

from a compilation on the XE6 TDS system. Especially for small block sizes (or blocks
where one or more dimensions is small) we find that libsmm outperforms the BLAS in
Cray’s libsci by up to 10 times. Similar results have been found comparing with e.g.
MKL on an Intel platform. For larger block sizes, the performance tends towards Libsci
BLAS indicating that a faster method could not be found. It should be noted that in the
limit of very large blocks (1000x1000), DGEMM achieves around 12.8 GLOP/s, which is
around 5.5 FLOPs/cycle, indicating that the library is making use of the AMD Bulldozer
architecture’s FMA4 instructions since for these tests only a single thread is running.
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Figure 5: Comparing performance of SMM and Libsci BLAS for block sizes up to 22,22,22

Libsmm is distributed with the CP2K source package, and a version of the library
optimised for the current HECToR Phase 3 ‘Interlagos’ processors can be found in
/usr/local/packages/cp2k/2.3.15/libs/libsmm/.

3.1.3 Threading

Recall that DBCSR matrices are decomposed by rows, which each row being ‘owned’
by a specific OpenMP thread. The current load balancing strategy (rows are assigned
weighted by the block size of each row) results in some load imbalance since it does not
take account of the sparsity of each row.

When investigating how to improve the load balance it was discovered that thread 0
was consistently taking longer than the other threads by up to 20% (even for artificial in-
puts which are perfectly load balanced). Careful inspection of the code revelead this was
due to timing routines called by every thread which contained !$omp master directives.
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•  GLOBAL%FFTW_PLAN_TYPE 
MEASURE | PATIENT 

•  Up to 5% Speedup 
possible

•  libsmm for small block 
multiplications 



CP2K Algorithms and Data Structures 
• OpenMP 

•  Now in all key areas of CP2K 
•  FFT, DBCSR, Collocate/

Integrate, Buffer Packing 
•  Incremental addition over time 

• Dense Linear Algebra 
•  Matrix operations during SCF 
•  GEMM - ScaLAPACK 
•  SYEVD – ScaLAPACK / ELPA 
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•  -D__ELPA2 and link library to enable  
•  GLOBAL

%PREFERRED_DIAG_LIBRARY ELPA 
•  Up to ~5x Speedup for large, metallic 

systems 

•  Usually 2 or 4 threads per 
process 



Parallel Performance 
•  Different ways of comparing time-to-solution and compute 

resource… 

•  Speedup: S = Tref / Tpar 

•  Efficiency: Ep = Sp / p ,   ‘good’ scaling is E > 0.7 

•  If E < 1, then using more processors uses more compute time 
(AUs) 

•  Compromise between overall speed of calculation and efficient 
use of budget 
•  Depends if you have one large or many smaller calculations 



Parallel Performance : H2O-xx 
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Parallel Performance: LiH-HFX 
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Parallel Performance: H2O-LS-DFT 
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Parallel Performance: H2O-64-RI-MP2 
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Parallel Performance: GPUs 

•  ~25% speedup 
•  Only for DBCSR 



CP2K Timing Report 
•  CP2K measures are reports time spent in routines and communication 

•  timing reports are printed at the end of the run 

 ------------------------------------------------------------------------------- 
 -                                                                             - 
 -                         MESSAGE PASSING PERFORMANCE                         - 
 -                                                                             - 
 ------------------------------------------------------------------------------- 
 
 ROUTINE             CALLS  TOT TIME [s]  AVE VOLUME [Bytes]  PERFORMANCE [MB/s] 
 MP_Group                4         0.000 
 MP_Bcast              186         0.018             958318.             9942.82 
 MP_Allreduce         1418         0.619               2239.                5.13 
 MP_Gather              44         0.321              21504.                2.95 
 MP_Sync              1372         0.472 
 MP_Alltoall          1961         5.334          323681322.           119008.54 
 MP_ISendRecv       337480         0.177               1552.             2953.86 
 MP_Wait            352330         5.593 
 MP_comm_split          48         0.054 
 MP_ISend            39600         0.179              14199.             3147.38 
 MP_IRecv            39600         0.100              14199.             5638.21 
 ------------------------------------------------------------------------------- 



CP2K Timing Report 
 ------------------------------------------------------------------------------- 
 -                                                                             - 
 -                                T I M I N G                                  - 
 -                                                                             - 
 ------------------------------------------------------------------------------- 
 SUBROUTINE                       CALLS  ASD         SELF TIME        TOTAL TIME 
                                MAXIMUM       AVERAGE  MAXIMUM  AVERAGE  MAXIMUM 
 CP2K                                 1  1.0    0.018    0.018   57.900   57.900 
 qs_mol_dyn_low                       1  2.0    0.007    0.008   57.725   57.737 
 qs_forces                           11  3.9    0.262    0.278   57.492   57.493 
 qs_energies_scf                     11  4.9    0.005    0.006   55.828   55.836 
 scf_env_do_scf                      11  5.9    0.000    0.001   51.007   51.019 
 scf_env_do_scf_inner_loop           99  6.5    0.003    0.007   43.388   43.389 
 velocity_verlet                     10  3.0    0.001    0.001   32.954   32.955 
 qs_scf_loop_do_ot                   99  7.5    0.000    0.000   29.807   29.918 
 ot_scf_mini                         99  8.5    0.003    0.004   28.538   28.627 
 cp_dbcsr_multiply_d               2338 11.6    0.005    0.006   25.588   25.936 
 dbcsr_mm_cannon_multiply          2338 13.6    2.794    3.975   25.458   25.809 
 cannon_multiply_low               2338 14.6    3.845    4.349   14.697   15.980 
 ot_mini                             99  9.5    0.003    0.004   15.701   15.942 
•  --------------------------------------------------------------------- 



CP2K Timing Report 
• Not just for developers! 

•  Check that communication is < 50% of total runtime 
•  Check where most time is being spent: 

•  Sparse matrix multiplication - cp_dbcsr_multiply_d 
•  Dense matrix algebra – cp_fm_syevd (&DIAGONALISATION), 
cp_fm_cholesky_* (&OT), cp_fm_gemm 

•  FFT – fft3d_* 
•  Collocate / integrate – calculate_rho_elec, integrate_v_rspace 

• Control level of granularity 
&GLOBAL 
  &TIMINGS 
    THRESHOLD 0.00001  Default is 0.02 (2%) 
  &END TIMINGS 
  &END GLOBAL 



Summary 
•  First look for algorithmic gains 

•  Cell size, SCF settings, preconditioner, choice of basis set, QM/
MM , ADMM… 

• Check scaling of your system 
•  Run a few MD steps / reduced MAX_SCF 

• Almost all performance-critical code is in libraries 
•  Compiler optimisation –O3 is good enough 
•  Intel vs gfortran vs Cray – difference is close to zero 

• Before spending 1,000s of CPU hours, build libsmm, 
libgrid, ELPA, FFTW3… 
•  Or ask your local HPC support team J 



CP2K Parallelisation and Optimisation 
 
 
 
 

Questions? 


