
CP2K PARALLELISATION
AND OPTIMISATION
Iain Bethune (ibethune@epcc.ed.ac.uk)

Overview
• Overview of Parallel Programming models

•  Shared Memory
•  Distributed Memory

• CP2K Algorithms and Data Structures

• Parallel Performance

• CP2K Timing Report

Parallel Programming Models
• Why do we need parallelism at all?

• Parallel programming is (even) harder than sequential
programming

• Single processors are reaching limitations
•  Clock rate stalled at ~2.5 GHz (due to heat)
•  Full benefits of vectorisation (SIMD) can be hard to realise
•  Chip vendors focused on low-power (for mobile devices)

Parallel Programming Models
•  But we need more speed!

•  Solve problems faster (strong scaling)
•  Solve bigger problems in same time (weak scaling)
•  Tackle new science that emerges at long runtimes / large system size
•  Enables more accurate force models (HFX, MP2, RPA …)

•  Need strategies to split up our computation between different
processors

•  Ideally our program should run P times faster on P processors -
but not in practice!
•  Some parts may be inherently serial (Amdahl’s Law)
•  Parallelisation will introduce overheads e.g. communication, load

imbalance, synchronisation…

Parallel Programming Models
“The performance improvement to be gained by parallelisation is limited
by the proportion of the code which is serial”

Gene Amdahl, 1967

Parallel Programming Models
• Almost all modern CPUs are multi-core

•  2,4,6… CPU cores, sharing access to a common memory

•  This is Shared Memory Parallelism
•  Several processors executing the same program
•  Sharing the same address space i.e. the same variables
•  Each processor runs a single ‘thread’
•  Threads communicate by reading/writing to shared data

• Example programming models include:
•  OpenMP, POSIX threads (pthreads)

Analogy
• One very large whiteboard in a two-person office

•  the shared memory

•  Two people working on the same problem
•  the threads running on different cores attached to the memory

• How do they collaborate?
•  working together
•  but not interfering

• Also need private data

my
data

shared
data

my
data

Hardware

Memory

Processor

Shared Bus

Processor Processor Processor Processor

• Needs support of a shared-memory architecture

Parallel Programming Models
• Most supercomputers are built from 1000s of nodes

•  Each node consists of some CPUs and memory
•  Connected together via a network

•  This is Distributed Memory Parallelism
•  Several processors executing (usually) the same program
•  Each processor has it’s own address space
•  Each processor runs a single ‘process’
•  Threads communicate by passing messages

• Example programming models include:
•  MPI, SHMEM

Analogy
•  Two whiteboards in different single-person offices

•  the distributed memory

•  Two people working on the same problem
•  the processes on different nodes attached to the interconnect

• How do they collaborate?
•  to work on single problem

• Explicit communication
•  e.g. by telephone
•  no shared data

my
data

my
data

Hardware

• Natural map to
distributed-memory
•  one process per

processor-core
•  messages go over

the interconnect,
between nodes/OS’s

Processor

Processor

Processor

Processor

Processor
Processor

Processor
Processor

Interconnect

Parallel Programming Models
• Support both OpenMP or MPI (ssmp and popt)

•  Use OpenMP for desktop PCs with multi-cores or
•  MPI for clusters and supercomputers
•  Maybe also support for Accelerators (GPUs)

• May also combine MPI and OpenMP (psmp)
•  Called hybrid or mixed-mode parallelism
•  Use shared memory within a node (with several processors)
•  Use message passing between nodes
•  Usually only useful for scaling to 10,000s of cores!

CP2K Algorithms and Data Structures
•  (A,G) – distributed

matrices
•  (B,F) – realspace

multigrids
•  (C,E) – realspace data

on planewave
multigrids

•  (D) – planewave grids

•  (I,VI) – integration/
collocation of
gaussian products

•  (II,V) – realspace-to-
planewave transfer

•  (III,IV) – FFTs
(planewave transfer)

CP2K Algorithms and Data Structures
• Distributed realspace grids

•  Overcome memory bottleneck
•  Reduce communication costs
•  Parallel load balancing

•  On a single grid level
•  Re-ordering multiple grid levels
•  Finely balance with replicated tasks

Data layout in CP2K:
realspace grids (III)

Load balance work done on these grids!
Assign different regions of space at each level to the same MPI rank,
further balance on replicated grids

1 2 3

654

7 8 9

Level 1, fine grid, distributed Level 2, medium grid, dist Level 3, coarse grid, replicated

5 6 8

713

9 4 2

grids are allocated on each process corresponding to their virtual ranks. There are a
number of changes required in the realspace to planewave transfer routines to ensure
that the reordered grid data is sent to the correct process for transferring to the plane
wave grid, but this is facilitated by the use of a pair of mapping arrays real2virtual

and virtual2real which are members of the real space grid data structure and are used
to convert between the two orderings as needed.

For the same problem as above, using the new load balancing scheme, the load on
the most overloaded process is reduced by 30%, and this is now only 3.5 times the load
of the least loaded process. For this particular problem it is not possible to find a perfect
load balance, as there is a single grid level block which has more load associated with
it than then total average load. It is possible to overcome this by setting up the grid
levels so that they are more closely spaced, and thus there is less load on each grid level.
However, this comes at an increased memory cost for the extra grid levels and also affects
the numerics of the calculation slightly (1 in 106). As shown in figures 5 and 6 if it is
possible to balance the load perfectly, then this algorithm will succeed.

After load_balance_distributed

Maximum load: 1165637

Average load: 176232

Minimum load: 0

After load_balance_replicated

Maximum load: 1165637

Average load: 475032

Minimum load: 317590

Figure 5: W216 load balance on 16 cores - perfect load balance achieved

14

•  libgrid for
optimised
collocate/integrate
routines

•  ~5-10% speedup
typical

CP2K Algorithms and Data Structures
•  Fast Fourier Transforms

•  1D or 2D decomposition
•  FFTW3 and CuFFT library interface
•  Cache and re-use data

•  FFTW plans, cartesian communicators

• DBCSR
•  Distributed MM based on Cannon’s

Algorithm
•  Local multiplication recursive, cache

oblivious

from a compilation on the XE6 TDS system. Especially for small block sizes (or blocks
where one or more dimensions is small) we find that libsmm outperforms the BLAS in
Cray’s libsci by up to 10 times. Similar results have been found comparing with e.g.
MKL on an Intel platform. For larger block sizes, the performance tends towards Libsci
BLAS indicating that a faster method could not be found. It should be noted that in the
limit of very large blocks (1000x1000), DGEMM achieves around 12.8 GLOP/s, which is
around 5.5 FLOPs/cycle, indicating that the library is making use of the AMD Bulldozer
architecture’s FMA4 instructions since for these tests only a single thread is running.

0"

1"

2"

3"

4"

5"

6"

7"

8"

1,1
,1"

1,9
,9"

1,2
2,2
2"

4,9
,6"

4,2
2,1
7"

5,9
,5"

5,2
2,1
6"

6,9
,4"

6,2
2,1
3"

9,9
,1"

9,2
2,9
"

13
,6,
22
"

13
,22
,6"

16
,6,
17
"

16
,22
,5"

17
,6,
16
"

17
,22
,4"

22
,6,
13
"

22
,22
,1"

GF
LO

P/
s(

M,N,K(

Libsmm(vs.(Libsci(DGEMM(Performance(

SMM"(Gfortran"4.6.2)"

Libsci"BLAS"(11.0.04)"

Figure 5: Comparing performance of SMM and Libsci BLAS for block sizes up to 22,22,22

Libsmm is distributed with the CP2K source package, and a version of the library
optimised for the current HECToR Phase 3 ‘Interlagos’ processors can be found in
/usr/local/packages/cp2k/2.3.15/libs/libsmm/.

3.1.3 Threading

Recall that DBCSR matrices are decomposed by rows, which each row being ‘owned’
by a specific OpenMP thread. The current load balancing strategy (rows are assigned
weighted by the block size of each row) results in some load imbalance since it does not
take account of the sparsity of each row.

When investigating how to improve the load balance it was discovered that thread 0
was consistently taking longer than the other threads by up to 20% (even for artificial in-
puts which are perfectly load balanced). Careful inspection of the code revelead this was
due to timing routines called by every thread which contained !$omp master directives.

10

•  GLOBAL%FFTW_PLAN_TYPE
MEASURE | PATIENT

•  Up to 5% Speedup
possible

•  libsmm for small block
multiplications

CP2K Algorithms and Data Structures
• OpenMP

•  Now in all key areas of CP2K
•  FFT, DBCSR, Collocate/

Integrate, Buffer Packing
•  Incremental addition over time

• Dense Linear Algebra
•  Matrix operations during SCF
•  GEMM - ScaLAPACK
•  SYEVD – ScaLAPACK / ELPA

2!

20!

10! 100! 1000! 10000! 100000!

Ti
m

e
pe

r M
D

st
ep

 (s
ec

on
ds

)!

Number of cores!

XT4 (MPI Only)!
XT4 (MPI/OpenMP)!
XT6 (MPI Only)!
XT6 (MPI/OpenMP)!

•  -D__ELPA2 and link library to enable
•  GLOBAL

%PREFERRED_DIAG_LIBRARY ELPA
•  Up to ~5x Speedup for large, metallic

systems

•  Usually 2 or 4 threads per
process

Parallel Performance
•  Different ways of comparing time-to-solution and compute

resource…

•  Speedup: S = Tref / Tpar

•  Efficiency: Ep = Sp / p , ‘good’ scaling is E > 0.7

•  If E < 1, then using more processors uses more compute time
(AUs)

•  Compromise between overall speed of calculation and efficient
use of budget
•  Depends if you have one large or many smaller calculations

Parallel Performance : H2O-xx

0.5!

5!

50!

500!

1! 10! 100! 1000! 10000!

Ti
m

e
pe

r M
D

st
ei

p
(s

ec
on

ds
)!

Number of cores!

XT3 Stage 0 (2005)!

XC30 ARCHER (2013)!

H2O-512!

H2O-32!
H2O-64!

H2O-128!

H2O-256!

H2O-32!
H2O-64!

H2O-128!

H2O-256!

H2O-512!

H2O-1024!

H2O-2048!
!

Parallel Performance: LiH-HFX

 10

 100

 1000

 10 100 1000 10000

Ti
m

e
(s

ec
on

ds
)

Number of nodes used

Performance comparison of the LiH-HFX benchmark

2TH

2TH

4TH
8TH

4TH

6TH

6TH

6TH

6TH
6TH

2.30

2.60

2.55
2.37

ARCHER
HECToR

Parallel Performance: H2O-LS-DFT

 10

 100

 1000

 10 100 1000 10000

Ti
m

e
(s

ec
on

ds
)

Number of nodes used

Performance comparison of the H2O-LS-DFT benchmark

2TH

2TH

4TH
8TH 4TH

4TH 8TH

6TH

6TH

6TH

6TH

2TH
2TH 4TH

2.00

2.06

2.20

3.30

4.66
3.68 3.45

ARCHER
HECToR

Parallel Performance: H2O-64-RI-MP2

 10

 100

 1000

 10 100 1000 10000

T
im

e
 (

se
co

n
d

s)

Number of nodes used

2TH

2TH

2TH

4TH

8TH 8TH8TH

MPI

MPI

2TH

2TH
4TH

4TH4TH

2.09

2.20

1.65

1.60
1.49

1.691.71

ARCHER
HECToR Phase 3

Parallel Performance: GPUs

•  ~25% speedup
•  Only for DBCSR

CP2K Timing Report
•  CP2K measures are reports time spent in routines and communication

•  timing reports are printed at the end of the run

 - -
 - MESSAGE PASSING PERFORMANCE -
 - -

 ROUTINE CALLS TOT TIME [s] AVE VOLUME [Bytes] PERFORMANCE [MB/s]
 MP_Group 4 0.000
 MP_Bcast 186 0.018 958318. 9942.82
 MP_Allreduce 1418 0.619 2239. 5.13
 MP_Gather 44 0.321 21504. 2.95
 MP_Sync 1372 0.472
 MP_Alltoall 1961 5.334 323681322. 119008.54
 MP_ISendRecv 337480 0.177 1552. 2953.86
 MP_Wait 352330 5.593
 MP_comm_split 48 0.054
 MP_ISend 39600 0.179 14199. 3147.38
 MP_IRecv 39600 0.100 14199. 5638.21

CP2K Timing Report

 - -
 - T I M I N G -
 - -

 SUBROUTINE CALLS ASD SELF TIME TOTAL TIME
 MAXIMUM AVERAGE MAXIMUM AVERAGE MAXIMUM
 CP2K 1 1.0 0.018 0.018 57.900 57.900
 qs_mol_dyn_low 1 2.0 0.007 0.008 57.725 57.737
 qs_forces 11 3.9 0.262 0.278 57.492 57.493
 qs_energies_scf 11 4.9 0.005 0.006 55.828 55.836
 scf_env_do_scf 11 5.9 0.000 0.001 51.007 51.019
 scf_env_do_scf_inner_loop 99 6.5 0.003 0.007 43.388 43.389
 velocity_verlet 10 3.0 0.001 0.001 32.954 32.955
 qs_scf_loop_do_ot 99 7.5 0.000 0.000 29.807 29.918
 ot_scf_mini 99 8.5 0.003 0.004 28.538 28.627
 cp_dbcsr_multiply_d 2338 11.6 0.005 0.006 25.588 25.936
 dbcsr_mm_cannon_multiply 2338 13.6 2.794 3.975 25.458 25.809
 cannon_multiply_low 2338 14.6 3.845 4.349 14.697 15.980
 ot_mini 99 9.5 0.003 0.004 15.701 15.942
•  ---

CP2K Timing Report
• Not just for developers!

•  Check that communication is < 50% of total runtime
•  Check where most time is being spent:

•  Sparse matrix multiplication - cp_dbcsr_multiply_d
•  Dense matrix algebra – cp_fm_syevd (&DIAGONALISATION),
cp_fm_cholesky_* (&OT), cp_fm_gemm

•  FFT – fft3d_*
•  Collocate / integrate – calculate_rho_elec, integrate_v_rspace

• Control level of granularity
&GLOBAL
 &TIMINGS
 THRESHOLD 0.00001 Default is 0.02 (2%)
 &END TIMINGS
 &END GLOBAL

Summary
•  First look for algorithmic gains

•  Cell size, SCF settings, preconditioner, choice of basis set, QM/
MM , ADMM…

• Check scaling of your system
•  Run a few MD steps / reduced MAX_SCF

• Almost all performance-critical code is in libraries
•  Compiler optimisation –O3 is good enough
•  Intel vs gfortran vs Cray – difference is close to zero

• Before spending 1,000s of CPU hours, build libsmm,
libgrid, ELPA, FFTW3…
•  Or ask your local HPC support team J

CP2K Parallelisation and Optimisation

Questions?

