4th CP2K tutorial: Enabling the Power of Imagination in MD Simulations August 31- September 4 2015, Zürich

Some spectroscopic tools

Marcella Iannuzzi

Department of Chemistry, University of Zürich

http://www.cp2k.org

Electron Densíty: Cube File

Valence density on regular grids

$$n(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r}) \to \sum_{\mu\nu} P_{\mu\nu} \bar{\varphi}_{\mu\nu}(\mathbf{R}) = n(\mathbf{R})$$

Cutoff might be too small for high resolution close to the nuclei (all electrons)

$$\psi_i(\mathbf{r}) = \sum_{\mu} C_{\mu i} \varphi_{\mu}(\mathbf{r}) \rightarrow \sum_{\mu} C_{\mu i} \bar{\varphi}(\mathbf{R}) = \psi_i(\mathbf{R})$$

-Quic	kstep-					
TOTA	L DENSI	TY				
8	0.00000	0.000000	0.000000			
54	0.34994	9 0.000000	0.000000			
54	0.00000	0 0.349949	0.000000			
63	0.00000	0 0.000000	0.362827			
5	0.00000	9.448631	9.44863 I	11.338357		
5	0.00000	9.448631	9.44863 I	14.683172		
I	0.00000	0 11.322313	9.44863 I	13.010846		
I	0.00000	7.574948	9.44863 I	13.010846		
I	0.00000	9.448631	11.416848	15.778669		
I.	0.00000	9.448631	7.480413	15.778669		
I	0.00000	9.448631	7.480413	10.242860		
I	0.00000	9.448631	11.416848	10.242860		
0.16	324E-08	0.14425E-08	0.13016E-08	0.12075E-08	0.11584E-08	0.11533E-08
0.119	920E-08	0.12755E-08	0.14051E-08	0.15832E-08	0.18123E-08	0.20955E-08
0.24	355E-08	0.28348E-08	0.32950E-08	0.38170E-08	0.44000E-08	0.50422E-08
0.57	400E-08	0.64880E-08	0.72795E-08	0.81060E-08	0.89579E-08	0.98243E-08

B₂H₆

Spin polarized DFT calculations:

$$n^{(\alpha)}(\mathbf{r}) = \sum_{\mu\nu} P^{(\alpha)}_{\mu\nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r}) \qquad n^{(\beta)}(\mathbf{r}) = \sum_{\mu\nu} P^{(\beta)}_{\mu\nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r})$$

$$\Delta n_{\rm spin}(\mathbf{r}) = n^{(\alpha)}(\mathbf{r}) - n^{(\beta)}(\mathbf{r}) \to \Delta n_{\rm spin}(\mathbf{R})$$

$H_3C-CO-NH_2-CH_3$

(H₃C-CO-NH₂-CH₃)⁺

Dissociation of HNO3 catalysed by graphite

Changes in the electronic density due to interactions, e.g., molecule adsorbed on substrate

$$E_{\rm ads} = E_{\rm tot} - (E_{\rm sub}^o + E_{\rm mol}^o) \qquad \qquad E_{\rm int} = E_{\rm tot} - \left(E_{\rm sub}^f + E_{\rm mol}^f\right)$$

$$\Delta n_{\rm int}(\mathbf{r}) = n_{\rm tot}(\mathbf{r}) - \left(n_{\rm sub}^f(\mathbf{r}) + n_{\rm mol}^f(\mathbf{r})\right)$$

Tersoff-Hamann approximation to mimic the iso-current topography

$$n_b(\mathbf{r}) = \sum_{i:\varepsilon_i \in [E_f - V_b:E_f]} \left[\sum_{\mu\nu} C^*_{\mu i} C_{\nu i} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r}) \right] \to n_b(\mathbf{R})$$

Find height at constant energy projected density

$$z: n_b(X, Y, z) e^{-2kR_0\sqrt{\Phi(X, Y, z)}}$$

		electronics
	feedback	
- F		**
up	~	233
		12.00
ample	10 ₇	T
0.00500		anomulas

CHP on hBN/Rh (5 eV)

Position operator for isolated systems

One body operator

$$\hat{X} = \sum_{i=1}^{N} x_i$$

Expectation value

$$\langle X \rangle = \langle \Psi | \hat{X} | \Psi \rangle = \int x \ n(x) dx$$

Gauge invariance

$$\langle X \rangle_R = \langle \Psi | \hat{X} + R | \Psi \rangle = \langle X \rangle_0 + R \int n(x) dx = \langle X \rangle_0 + RZ$$

Position Operator with PBC

Expectation value of the position operator

$$\hat{\mathbf{R}} = \sum_{i} \hat{\mathbf{r}}_{i} \qquad \langle \mathbf{R} \rangle = \langle \Psi | \hat{\mathbf{R}} | \Psi \rangle = \int \mathbf{r} n(\mathbf{r}) d\mathbf{r}$$
 (3D)

A

Wavefunctions are periodic, result of an operator has also to be periodic

$$\Psi(\mathbf{r}) = \Psi(\mathbf{r} + \mathbf{L}) \qquad \hat{\mathbf{R}}\Psi(\mathbf{r}) \neq (\hat{\mathbf{R}} + \mathbf{L})\Psi(\mathbf{r} + \mathbf{L})$$

Many-body periodic position operator (1D)

$$\langle X \rangle = \frac{L}{2\pi} \operatorname{Im} \ln \langle \Psi \mid e^{i\frac{2\pi}{L}\hat{X}} \mid \Psi \rangle$$

Berry Phase

Electronic polarisation

$$P_{\mathsf{el}} = \lim_{L \to \infty} \frac{e}{2\pi} \operatorname{Im} \ln \langle \Psi \mid e^{i \frac{2\pi}{L} \hat{X}} \mid \Psi \rangle$$

Resta, R. (1998). Quantum-Mechanical Position Operator in Extended Systems. *Physical Review Letters*, **80**(9), 1800–1803. and more by R. Resta

Many-body wavefunction (Bloch orbitals)

$$|\Psi\rangle = A \prod_{i} \prod_{s} \psi_{q_s,i}(\mathbf{r})$$

New set of Bloch orbitals

$$\tilde{\psi}_{q_s,m}(x) = e^{-i\frac{2\pi}{L}x}\psi_{q_s,m}(x) \qquad \qquad \frac{2\pi}{L} = G_1$$

Expectation value from overlap of determinants = determinants of overlap of orbitals

$$\langle X \rangle = -\frac{L}{2\pi} Im \ln \langle \Psi | \tilde{\Psi} \rangle = -\frac{L}{2\pi} Im \ln \det S$$

$$S_{ij}^{\alpha} = \int \psi_i(\mathbf{r}) e^{i\mathbf{G}_{\alpha \mathbf{1}} \cdot \mathbf{r}} \psi_j(\mathbf{r}) d\mathbf{r} \qquad P^{\alpha} = \frac{2e}{\mathbf{G}_{\alpha \mathbf{1}}} \operatorname{Im} \ln\left[\det \mathbf{S}^{\alpha}\right]$$

Localised Orbitals

***** Boys spread of the orbitals through a 2-el operator $\Omega = \sum_{i} \langle \psi_{i} \psi_{i} | (\mathbf{r}_{1} - \mathbf{r}_{2})^{2} | \psi_{i} \psi_{i} \rangle$ ***** With PBC, localize equivalent to minimize $\Omega = \frac{1}{2\pi} \sum_{s} \sum_{i} \omega_{s} (1 - (|z_{si}|^{2})) \qquad z_{si} = \int d\mathbf{r} \ e^{i\mathbf{k}_{s} \cdot \mathbf{r}} |\psi_{i}(\mathbf{r})|^{2}$

Find the unitary transformation

$$\tilde{\psi}_i(\mathbf{r}) = \sum_j U_{ij} \psi_i(\mathbf{r}) \qquad \qquad \frac{\partial \Omega}{\partial U_{ij}} = 0$$

Iterative procedure (parallel Jacobi rotations)

Centre of the charge distribution of the rotated orbital

$$\langle r_{si} \rangle = \frac{L_s}{2\pi} \mathrm{Im} \ln z_{si}$$

R.Resta, Phys. Rev. Lett., **82** 370 (1999); G.Bergold et al, Phys. Rev. B, **61** 10041 (2000)

Wannier Centers (3D)

For a generalised 3D box h, for each maximally localised Wannier orbital

$$z_{si} = \det \mathbf{h} \int d\mathbf{r} \ e^{i\mathbf{k}_s \cdot \mathbf{r}} |\psi_i(\mathbf{r})|^2 \qquad \mathbf{r}_{si} = -\sum_t \frac{\mathbf{h}_{st}}{2\pi} \operatorname{Im} \ln z_{ti}$$

Molecular dipole moment from Wannier centres

$$\mu_s^W = e \sum_i \mathbf{r}_{si} = -e \sum_i \sum_t \frac{\mathbf{h}_{st}}{2\pi} \operatorname{Im} \ln z_{ti} = -e \sum_t \frac{\mathbf{h}_{st}}{2\pi} \operatorname{Im} \ln \prod_i z_{ti}$$

IR spectra from dipole moment autocorrelation function

$$\alpha(\omega) = \frac{4\pi \ \omega \ \mathrm{tanh}(\beta \hbar \omega/2)}{\hbar n(\omega) c V} \int_{-\infty}^{\infty} dt \ e^{-i\omega t} \langle P(t) \cdot P(0) \rangle$$

Materials Science Research

interpretation

Spectroscopies

methods to study the properties of matter (atoms, molecules, solids) by investigating its interactions with particles (photons, electrons, neutrons, ions)

Electromagnetic Spectrum

3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Various Spectroscopic Methods

Vibrational spectroscopy

NMR/EPR

Gaigeot, M.-P.et al (2012). J Phys Cond Matt, 24, 124106.

Hydrated Adenine: QM/MM NMR

Weber, V. V., et al (2009). JCP, 131, 014106

Iannuzzi, M. M. (2008) JCP, 128, 204506.

X-ray absorption Fine Structure

* Characterization of materials by synchrotron radiation

- X-ray spectra connect to the core-electron excited states (role of core hole)
- ***** Element specific probe:
 - electronic structure in situ
 - time resolution (fs)
 - no long range order required
 - imaging

- Challenging interpretation of the spectra
- Central role of theoretical approach
 - charge transfer
 - nature of bonding
 - hybridization
 - chemical environment

X-ray Absorption Simulations

Interpretation of experiment, structures refinement (signal assignment), understanding of physical-chemical properties of materials.

Kaznacheyev et al, JPC A, **106**, 3153 (2002)

Computational spectroscopy (inner-shell, NMR, ..) often requires approaches beyond cluster model or PP approximation: Efficient scheme for AE in condensed matter AE linear response theory

Core-hole Creation and Decay

XES/NEXAFS local probes for electronic and geometric properties

Unoccupied levels, symmetry resolved

One step process Finale state: core-hole

Instantaneous configuration in dynamic systems

Occupied orbitals

Two step process Final state : valence-hole

Binding of adsorbed molecules

Interaction X-ray with matter

Interaction with an electromagnetic field (incoming radiation)

$$\mathbf{A}(\mathbf{r},t) = A_0 \mathbf{e} \cos\left(\mathbf{k} \cdot \mathbf{r} - \omega t\right)$$

Linear perturbation term (time dependent perturbations)

$$V(t) = \frac{e}{mc} \mathbf{A} \cdot \mathbf{p}$$

Induced transition: probability according to Fermi golden rule ×

$$P_{if} = \frac{\pi e^2}{2\hbar m^2 c^2} A_0^2 |\langle f| e^{i\mathbf{k}\cdot\mathbf{r}} \mathbf{e} \cdot \mathbf{p} |i\rangle|^2 \rho_i(E)$$

* Long wavelength (UV, soft x-rays) $kr_s = \frac{2\pi}{\lambda}r_s \ll 1$ $P_{if} \propto \left| \langle f
ight| \left. \hat{e} \cdot \hat{p} \left. \left| i
ight
angle
ight|^2$ velocity form

Equivalent operators

$$\hat{p} = -i\hbar
abla = rac{im}{\hbar} [\hat{H}, \hat{r}]$$
 $P_{if} \propto (E_f - E_i) \left| \langle f \mid \hat{\mu} \mid i \rangle \right|^2$
length form

Ground state KS virtual orbitals ж

$$IP_i \neq -\varepsilon_i \qquad \Delta E(\mathbf{1s} \to \pi^*) \neq \varepsilon_{\pi^*} - \varepsilon_{\mathbf{1s}}$$

 $\tilde{E}[n(\lbrace f_i \rbrace)] \qquad n(\mathbf{r}) = \sum_{i} f_i |\psi_i(\mathbf{r})|^2$ Parametric SCF solution $IP_{i=1} = \tilde{E}(\mathbf{0}_1, \mathbf{1}_2, \dots, \mathbf{1}_N, \dots, \mathbf{0}_r, \dots) - \tilde{E}(\mathbf{1}_1, \mathbf{1}_2, \dots, \mathbf{1}_N, \dots, \mathbf{0}_r, \dots)$ $\Delta E(\mathbf{i} \to \mathbf{r}) = \tilde{E}(1_1, 1_2, ..., \mathbf{0}_{\mathbf{i}}, ..., 1_N, ..., \mathbf{1}_{\mathbf{r}}, ...) - \tilde{E}(1_1, 1_2, ..., 1_{\mathbf{i}}, ..., 1_N, ..., \mathbf{0}_{\mathbf{r}}, ...)$

* Not orthogonal MOs sets

$$P_{if} \propto |\langle f | \mathbf{e} \cdot \mathbf{p} | i \rangle|^2 \rho_i(E)$$

The Transition Potential Method

Independent-Particle Approach

Direct calculation of the excitation energies from the solution of KS equation with a modified core potential on the absorbing atom

$$IP_i = \int_1^0 df_i \frac{\partial \tilde{E}(\{f_j\})}{\partial f_i} \simeq \left(\frac{\partial \tilde{E}(\{f_j\})}{\partial f_i}\right)_{f_i = \frac{1}{2}} = \varepsilon_i \left(\frac{1}{2}\right)$$

Relaxation effects up to second order in $\partial E/\partial f$: balance between initial and final state contributions

X One calculation for each excitation

$$\hbar\omega_{if} = \varepsilon_f^T - \varepsilon_i^T \qquad I_{if} = \frac{2}{3}\omega_{if}|\langle \psi_i^T | \bar{\mu} | \psi_f^T \rangle|^2$$

Errors/Corrections

Single particle picture (hole/electron correlation)

Basis sets flexible to relaxation to describe Rydberg states; Double basis set approach [19s,19p,19d]

* Using TP: error due to higher order contributions to the core relaxation energy

***** Energy corrections based on \triangle SCF

$$\Delta IP = \varepsilon_{1s}^T \left(\frac{1}{2}\right) - IP_{\Delta SCF}$$

$$\Delta (1s \to \pi^*) = \left(\varepsilon_{\pi*} - \varepsilon_{1s}^T \left(\frac{1}{2} \right) \right) - \Delta E_{\Delta SCF}$$

* Relativistic correction as rigid, species-dependent translation

The Core Hole

The actual location of the excited electron in the final state has a relative small effect on relaxation of the orbitals

The focus is set on the core hole

Only one SEF calculation per core hole for the entire spectrum

AE-TP in Condensed Matter

Ground state SCF and localization of the occupied orbitals

* Character of the Core states

$$\tilde{\psi}_{i}(\mathbf{r}) = \sum_{\mu} \tilde{C}_{\mu i} \varphi_{\mu}(\mathbf{r}) \qquad \stackrel{O_{1s}, n}{\Longrightarrow} \qquad Max_{i} \quad \left\{ \left\langle \tilde{\psi}_{i}^{O_{n}} | \varphi_{O, 1s}^{STO} \right\rangle \right\} \quad \Longrightarrow \qquad \text{j-tills stratiles}$$

Half Core Hole or Full Core Hole (LSD) $f_j = \frac{1}{2}, 0$

SCF with modified occupation numbers

* Oscillator strengths in the velocity form

$$I_{if} = |\langle \boldsymbol{\psi}_i^T | \nabla | \boldsymbol{\psi}_f^T \rangle|^2$$

&XAS &SCF EPS_SCF 1.0E-4 MAX SCF 200 &SMEAR ON METHOD FERMI_DIRAC ELECTRONIC TEMPERATURE [K] 300 &END &MIXING METHOD BROYDEN MIXING ALPHA 0.1 **BETA 1.5 NBUFFER 8** &END MIXING &END SCF METHOD TP HH DIPOLE_FORM VELOCITY STATE_TYPE 1s STATE_SEARCH 1 ATOMS LIST 1 ADDED_MOS 1000 &LOCALIZE &END

&PRINT &PROGRAM RUN INFO &END &RESTART FILENAME ./hch_dim_p12_ud &EACH XAS SCF 15 &END ADD_LAST NUMERIC &END &XAS_SPECTRUM FILENAME ./hch_dim_p12_ud &END &XES_SPECTRUM FILENAME ./hch_dim_p12_ud &END &END &END XAS

Broadening and Shift

Convolution using Gaussian functions with adapted width

$$f(x) = I_{\rm SL} \frac{1}{\sigma \sqrt{2\pi}} e^{(x - x_{\rm SL})^2 / (2\sigma^2)}$$

$$\sigma = \begin{cases} \sigma_{\min} & : & \omega_{if} < E_{\min} \\ \sigma_{\min} + (\omega_{if} - E_{\min}) \cdot \frac{\sigma_{\max} - \sigma_{\min}}{E_{\max} - E_{\min}} & : & E_{\min} < \omega_{if} < E_{\max} \\ \sigma_{\max} & : & E_{\max} < \omega_{if} \end{cases}$$

Small Molecules: atomic environment

Iannuzzi, Hutter, PCCP (2007)

Extended Systems: supercell approach

Diamond

512 C atoms pristine crystal 6-311G(dp) PBE

Graphite under shock compression

second gap

Mundy, Curioni, Kuo, Iannuzzi, et al, JCP, 128, (2008) 27

Magnetic Shielding

Interaction between **B** and a spin 1/2 nucleus with spin angular momentum $\hbar \mathbf{I}_k$

$$H = -\sum_{k} \gamma_k \hbar \mathbf{I}_k (1 + \overleftarrow{\sigma}) \mathbf{B}_0$$

in diamagnetic materials the Bind arises only from the induced orbital currents j

$$\mathbf{B}_{\mathrm{ind}} = -\overleftarrow{\sigma}_k \mathbf{B}_0 \qquad \qquad \mathbf{B}_{\mathrm{ind}}(\mathbf{r}) = \frac{1}{c} \int \,\mathrm{d}^3 r' \mathbf{j}(\mathbf{r}') \times \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3}$$

second derivative of electronic energy

$$\overleftarrow{\sigma}_k(\mathbf{R}) = \frac{\partial^2 E}{\partial \mathbf{B} \partial \mathbf{m}_k}$$

chemical shift w.r.t. reference

$$\delta = rac{
u -
u_{
m ref}}{
u_{
m ref}} (imes 10^6) pprox (\sigma_{
m ref} - \sigma) \qquad \sigma = rac{1}{3} {
m Tr}[\overleftrightarrow{\sigma}]$$

Schielding and g tensors

applied B⁰ along ×
$$\sigma_{xy}(\mathbf{R}_A) = \frac{1}{c} \int_{\Omega} \left[\frac{\mathbf{r} - \mathbf{R}_A}{|\mathbf{r} - \mathbf{R}_A|^3} \times \mathbf{j}_x(\mathbf{r}) \right]_y \mathrm{d}^3 r$$

$$ho^s({f r})=
ho^lpha({f r})-
ho^eta({f r})$$
 spin density

$$g_{xy} = g_{xy}^{\rm Z} + \Delta g_{xy}^{\rm ZKE} + \Delta g_{xy}^{\rm SO} + \Delta g_{xy}^{\rm SOO}$$

$$g_{xy}^{\mathrm{Z}} = g_e \delta_{xy}$$
 free el. g value

$$\Delta g_{xy}^{
m ZKE} = -rac{g_e}{c^2} \left(T^{lpha} - T^{eta}\right) \delta_{xy}$$
 unperturbed kinetic energy

$$\Delta g_{xy}^{\rm SO} = \frac{g_e - 1}{c} \int_{\Omega_C} \left[\mathbf{j}_x^{\alpha} \times \nabla V_{\rm eff}^{\alpha} - \mathbf{j}_x^{\beta} \times \nabla V_{\rm eff}^{\beta} \right] d^3 \mathbf{r} \quad \begin{array}{l} \text{induced spin current} \\ \text{effective pot.} \end{array}$$

$$\Delta g_{xy}^{\text{SOO}} = 2 \int_{\Omega_C} B_{xy}^{\text{corr}}(\mathbf{r}) \rho^s(\mathbf{r}) d^3 \mathbf{r}$$

magnetic field from current

$$-i\sum_{il} \left(H_{kl}\delta_{ij} - S_{kl} \int \psi_i^{(0)}(\mathbf{r}) H(\mathbf{r})\psi_j^{(0)}(\mathbf{r}) d\mathbf{r}^3 \right) C_{ij}^{(1)} = \sum_l H_{kl(j)}^{(1)} C_{lj}^0$$

The magnetic field **B** represented by the vector potential **A**
$$\mathbf{A}(\mathbf{r}) = -\frac{1}{2}(\mathbf{r} - \mathbf{R}_g) \times \mathbf{B}_0$$
 $\hat{\mathbf{p}} \rightarrow \hat{\mathbf{p}} - e\mathbf{A}(\hat{\mathbf{r}})$ $\hat{\mathbf{p}} = -i\hbar\nabla$

First order and second order perturbation terms in the Hamiltonian

$$\mathbf{H}^{\text{pert}} = -\frac{e}{m}\hat{\mathbf{p}}\cdot\mathbf{A}(\hat{\mathbf{r}}) + \frac{e^2}{2m}\mathbf{A}(\hat{\mathbf{r}})\cdot\mathbf{A}(\hat{\mathbf{r}}) = \mathbf{H}^1 + \mathbf{H}^2$$

First order correction of the electronic ground state

$$\Psi(\mathbf{r}) = \Psi^0(\mathbf{r}) + B\Psi^1(\mathbf{r})$$
 $\langle \psi_i^0 | \psi_j^1
angle = 0$ $orall i, j$ imaginary response $n^1=0$

Gauge origin problem

 $\mathbf{j}(\mathbf{r}) = -rac{e^2}{m} \mathbf{A}(\mathbf{r}) \sum_{\mathbf{r}} \left| \psi_k^0(\mathbf{r}) \right|^2 - rac{i\hbar e}{m} \sum_{\mathbf{r}} \langle \psi_k^0 \left| [
abla | \mathbf{r}
angle \langle \mathbf{r} | + | \mathbf{r}
angle \langle \mathbf{r} |
abla] | \psi_k^1
angle$ Induced Current Convergence w.r.t basis set strongly depend on gauge Rg=d(r) $\mathbf{j}(\mathbf{r}) = \sum_{k} \mathbf{j}_{k}(\mathbf{r}) = \sum_{k} \mathbf{j}_{k}^{d}(\mathbf{r}) + \mathbf{j}_{k}^{p}(\mathbf{r})$ paramagnetic diamagnetic Gauge invariance in molecular and periodic systems $\mathbf{R}_{q} = \mathbf{R}_{\mu}$ **GIAO** accurate but involved and not efficient $\mathbf{R}_{a} = \mathbf{d}_{k}$ IGLO gauge terms on the perturbation functional $\mathbf{R}_{q} = \mathbf{R}_{I}$ IGAIM no diamagnetic term, computationally convenient, slow converging with basis set quality $\mathbf{R}_{a} = \mathbf{r}$ CSGT

Calculation of Induced Currents

$$H^{1} = \hat{\mathbf{p}} \cdot (\hat{\mathbf{r}} - \mathbf{R}_{g}) \times \mathbf{B} = [(\hat{\mathbf{r}} \times \hat{\mathbf{p}}) - (\mathbf{R}_{g} \times \hat{\mathbf{p}})] \cdot \mathbf{B}$$

DFPT

$$-i\sum_{i\nu} \left(H^0_{\mu\nu}\delta_{ij} - S_{\mu\nu}\langle \psi^0_i | H | \psi^0_j \rangle \right) C^1_{\nu i} = \sum_{\nu} H^1_{\mu\nu(j)} C^0_{\nu j} \qquad \begin{array}{c} \text{dependency on} \\ \Psi^0 \end{array}$$

Partitioning of the perturbation operator

$$\begin{array}{cccc} C^{\mathbf{L}_{x}} & C^{\mathbf{L}_{y}} & C^{\mathbf{L}_{z}} \\ H^{\mathbf{L}}_{\mu\nu(j)} = -i\langle\mu|(\hat{\mathbf{r}} - \mathbf{d}_{j}) \times \nabla|\nu\rangle \end{array} & \begin{array}{cccc} C^{\mathbf{p}_{x}} & C^{\mathbf{p}_{y}} & C^{\mathbf{p}_{z}} \\ H^{\mathbf{p}}_{\mu\nu} = -i\langle\mu|\nabla|\nu\rangle \end{array} & \begin{array}{cccc} C^{\Delta_{ix}} & C^{\Delta_{iy}} & C^{\Delta_{iz}} \\ H^{\Delta_{i}}_{\mu\nuj} = -i(\mathbf{d}_{i} - \mathbf{d}_{j}) \times \langle\mu|\nabla|\nu\rangle \end{array}$$

x-component of linear current density j induced from B⁰ applied along y

$$\begin{aligned} j_{xy}(\mathbf{r}) &= -\frac{1}{2c} \sum_{i} \sum_{\mu\nu} \left[C^{0}_{\mu i} \left(C^{\mathbf{L}_{y}}_{\nu i} + (\mathbf{R}_{g} - \mathbf{d}_{i})_{x} C^{\mathbf{p}_{z}}_{\nu i} - (\mathbf{R}_{g} - \mathbf{d}_{i})_{z} C^{\mathbf{p}_{x}}_{\nu i} - C^{\Delta_{iy}}_{\nu i} \right) \\ &\times \left([\nabla_{x} \varphi_{\mu}(\mathbf{r})] \varphi_{\nu}(\mathbf{r}) - \varphi_{\mu}(\mathbf{r}) [\nabla_{\mathbf{x}}(\varphi_{\nu}(\mathbf{r}))] \right) \\ &+ (\mathbf{r} - \mathbf{R}_{g})_{z} n(\mathbf{r}) \quad \text{diamagnetic} \end{aligned}$$

Sebastiani, Parrinello, JPC, 105, 1951 (2001)

ψ

GAPW Chemical Shift

applied B⁰ along × $\sigma_{xy}(\mathbf{R}_A) = \frac{1}{c} \int_{\Omega} \left[\frac{\mathbf{r} - \mathbf{R}_A}{|\mathbf{r} - \mathbf{R}_A|^3} \times \mathbf{j}_x(\mathbf{r}) \right]_y \mathrm{d}^3 r$

GAPW induced current density

from soft term in reciprocal space

$$\begin{split} \tilde{\mathbf{B}}^{\text{ind}}(\mathbf{G} \neq 0) &= -\mu_0 i \frac{\mathbf{G}}{|\mathbf{G}|^2} \times \tilde{\mathbf{j}}(\mathbf{G}) \\ \tilde{\mathbf{B}}^{\text{ind}}(\mathbf{G} = 0) &= \kappa \; \chi \; \mathbf{B}^{\text{ext}} \end{split} \qquad \qquad \chi_{xy} = \frac{2\pi}{\Omega} \int \left[\mathbf{r} \times \tilde{\mathbf{j}}_x(\mathbf{r}) \right]_y \mathrm{d}^3 r \end{split}$$

 $\mathbf{j}(\mathbf{r}) = ilde{\mathbf{j}}(\mathbf{r}) + \sum_{A} \left(\mathbf{j}_{A}(\mathbf{r}) - ilde{\mathbf{j}}_{A}(\mathbf{r})
ight)$

from local terms by integration on spherical grids

$$\sigma_{xy}^{\rm loc}(\mathbf{R}_A) = \frac{1}{c} \sum_B \int_{\Omega_B} \left[\frac{\mathbf{r} - \mathbf{R}_A}{|\mathbf{r} - \mathbf{R}_A|^3} \times \left(\mathbf{j}_{xB}(\mathbf{r}) - \tilde{\mathbf{j}}_{xB}(\mathbf{r}) \right) \right]_y \mathrm{d}^3 r$$

Weber, Iannuzzi, Giani, Hutter, Declerck, Waroquier, JCP, 131, 014106 (2009)

NMR Imput

Linear Response run-type

&GLOBAL PROJECT \${PROJECT_NAME} PRINT_LEVEL LOW RUN_TYPE LINEAR_RESPONSE &END GLOBAL

Ground State GAPW

&DFT

BASIS_SET_FILE_NAME EMSL_BASIS_SETS POTENTIAL FILE NAME POTENTIAL &MGRID CUTOFF 300 &END MGRID &QS METHOD GAPW &END QS &SCF &OUTER SCF MAX SCF 200 &END OUTER SCF MAX SCF 20 EPS SCF 10E-6 &OT ALGORITHM IRAC PRECONDITIONER FULL ALL &END OT &END SCF &XC &XC FUNCTIONAL BLYP &END XC_FUNCTIONAL &END XC &END DFT

GAPW kind

&KIND N LEBEDEV_GRID 100 RADIAL_GRID 200 BASIS_SET **aug-cc-pVQZ** POTENTIAL **ALL** &END KIND

NMR Chemical Shift

&PROPERTIES &LINRES &LOCALIZE &END OPT METHOD CG LINESEARCH 2PNT PRECONDITIONER FULL ALL MAX SCF 2000 &CURRENT GAUGE ATOM ORBITAL CENTER COMMON &END CURRENT &NMR INTERPOLATE_SHIFT T &PRINT &CHI TENSOR &END CHI_TENSOR &END PRINT &END &END &END

NMR Output for SiHr4

Converged GAPW SCF

Total electronic density (r-space): -11.6	551998133 6.3448001867
Total core charge density (r-space): 18.	.000000000 0.000000000
Hard and soft densities (Lebedev): -67	7.3124445208 -60.9676446784
Total Rho_soft + Rho1_hard - Rho1_soft (r	-space): -17.9999996557
Total charge density (r-space):	0.0000003443
Total Rho_soft + Rho0_soft (g-space):	0.000003075
Overlap energy of the core charge distribu	ition: 0.00000011310807
Self energy of the core charge distribution:	: -131.30230308020512
Core Hamiltonian energy:	-159.90960164160288
Hartree energy: 3	32.53453281991028
Exchange-correlation energy:	-5.66831828118873
GAPW Exc from hard and soft atomic rh	o1: -16.66150292615432
GAPW local Eh = 1 center integrals:	-10.87514648571372
outer SCF iter = 2 RMS gradient = 0.35E	E-05 energy = -291.8823394818
outer SCF loop converged in 2 iterations	or 23 steps
ENERGY Total FORCE_EVAL (QS) energy	gy (a.u.): -291.882339481846373

NMR Output for Siltig

Localization procedure through Jacobi rotations

LOCALIZE | The spread relative to a set of orbitals is computed

LOCALIZE | Orbitals to be localized: All the occupied

LOCALIZE | Spread defined by the Berry phase operator

LOCALIZE | The optimal unitary transformation is generated by the Jacobi algorithm

Localization of the ground state orbitals before starting the linear response calculation Localization by iterative Jacobi rotation

5	2				
Iteration	Tolerar	ce			
100	0.2560E-0	1			
200	0.1556E-0	1			
300	0.6506E-0	2			
400	0.1981E-0	2			
500	0.8639E-0	3			
600	0.3288E-0	3			
Localization	for spin 1 c	onverged in	698	8 iterations	
Total Spread (Berry	y) x,y,z:	1.11359426	50	1.1135229959	1.1133052793

WANNIER CENTERS for spin 1

		Ce	nters		Spre	ads	
state	1	-0.222895	0.146450	0.058049	0.541470	0.000000	0.000000
state	2	0.000107	-0.064397	-0.264849	0.541498	0.000000	0.000000
state	3	0.222716	0.146673	0.058175	0.541470	0.000000	0.000000
state	4	0.000000	0.000121	0.000245	0.140158	0.000000	0.000000
state	5	0.000072	-0.228327	0.149401	0.541477	0.000000	0.000000
state	6	-1.772371	-1.183928	-0.406835	1.888384	0.000000	0.000000
state	7	0.000093	0.608045	2.082470	1.887723	0.000000	0.000000
state	8	0.000211	1.760315	-1.267771	1.887975	0.000000	0.000000
state	9	1.772063	-1.184376	-0.406863	1.888382	0.000000	0.000000

NMR Output for Siltig

Linear Response Initialization

START LINRES CALCULATION

Properties to be Calulated:

	NMR	Chemical Shif	ť		
LINRES		LO	CALIZED PSI0		
LINRES	Optimization algo	rithm	Conjugate Gradients		
LINRES	Line Search		2pnt		
LINRES	Preconditione	r	FULL ALL		
LINRES	EPS_SCF		1.0E-05		
LINRES	Max number of iter	rations per SC	'F cycle	2000	
Total energ -65.49055 -3.47809 -0.30804	gy ground state: 5205 -5.05920132 942 -0.48735526 975	-3.47810739 -0.30828056	-291.88233948447 -3.47810596 -0.30810235	7117	

*** Start current Calculation ***

Initialization of the current environment

CURRENT | Gauge used ATOM CURRENT | Orbital center used COMMON CURRENT | Common center 0.000000 0.000000 0.000000 CURRENT | Calculation of the p and (r-d)xp operators applied to psi0

NMR Output for Siltig

Localization procedure through Jacobi rotations

*** Self consistent optimization of the response wavefunctions ***

Response to the perturbation operator **P_x**

Iter.	Method	Stepsize	G-norm	Convergence	Total energy
10	LR LS	0.99E-01	0.0000000000	0.0323894903	-2.2638501245
20	LR LS	0.12E+00	0.0000000000	0.0077609426	-2.6500765218
30	LR LS	0.48E-01	0.0000000000	0.0077044886	-2.6794773033
40	LR LS	0.15E+00	0.0000000000	0.0050879317	-2.7024052890
50	LR LS	0.60E+00	0.0000000000	0.0074222310	-2.7361724629
60	LR LS	0.55E-01	0.0000000000	0.0036544263	-2.7922066072
70	LR LS	0.68E-01	0.0000000000	0.0027598118	-2.7965811305
80	LR LS	0.90E-01	0.0000000000	0.0011411853	-2.7983145616
90	LR LS	0.11E+00	0.0000000000	0.0008189226	-2.7988545411
100	LR LS	0.72E-01	0.0000000000	0.0005977973	-2.7991253972
110	LR LS	0.73E-01	0.0000000000	0.0003155523	-2.7991931045
120	LR LS	0.64E-01	0.0000000000	0.0002261754	-2.7992267386
130	LR LS	0.76E-01	0.0000000000	0.0000928637	-2.7992365112
140	LR LS	0.62E-01	0.0000000000	0.0000783777	-2.7992406728
150	LR LS	0.94E-01	0.0000000000	0.0000318069	-2.7992417209
160	LR LS	0.90E-01	0.0000000000	0.0000245090	-2.7992422317

The SCF has converged in 167 iterations

Second order energy $P_x = -0.2799242338698460E+01$ Store the psi1 for the calculation of the response current density Write the resulting psi1 in restart file... not implemented yet

NMR Output for Siltia

Final NMR output

Initialization of the NMR environment

Shift factor (ppm) NMR | 9.863793E-04 NMR | Shift factor gapw (ppm) 5.325134E+01 Chi factor (SI) NMR 1.972757E+01 NMR | Conversion Chi (ppm/cgs) 6.022045E-02 NMR | Conversion Chi to Shift 1.047198E-04 NMR | Shielding tensor computed for 5 atoms Integrated j_xx(r): G-space= 0.4608768062028217E+00 R-space= 0.4608768062028132E+00 Integrated j_yx(r): G-space= -0.2077039113301925E+01 R-space= -0.2077039113301958E+01 Integrated j_zx(r): G-space= -0.2039298825792812E+01 R-space= -0.2039298825793122E+01 CheckSum R-integrated j= 0.2947072888403525E+01 WARNING WARNING WARNING WARNING WARNING WARNING WARNING chi_analytic: gapw= T WARNING WARNING WARNING WARNING WARNING WARNING WARNING Integrated local j_xx(r)= -0.9615000648009942E-06Integrated local j_yx(r)= -0.4802383200079088E-04Integrated local j_zx(r) = 0.3935076278575146E-04

••••

CheckSum Chi = 0.6343893866003933E+03 CheckSum Shifts = 0.8086834144167068E+03

ENDED LINRES CALCULATION

IGAIM-GAPW

Test set composed of 26 small molecules

 C_2H_2 , CH_2O , CH_3CI , CH_3F , CH_4 , CI_2 , CO_2 , F_2 , FCI, H_2O_2 , H_2O , H_2 , H_2S , HCI, HCN, HCOOH, HF, HNO_3 , N_2O , N_2 , NH_3 , NO_2 , O_2 , O_3 , PH_3 , SO_2

40

Isolated Adenine

Geometry optimized in gas phase : BLYP/6-31G(dp)

		CP2K IGAIM BLYP/cc-p-VQZ	G IG BLYP /cc-pVQZ	GAIM BLYP /aug-cc-pVZ5	CP CS BLYP	PMD SGT /200Ry	
	$\overline{C_2}$	164	164	166	136	(168)	
	C_4	159	159	162	130	(161)	corrected
Q	C_5	128	128	130	93	(124)	
0	C_6	163	163	165	134	(166)	
	C_8	141	141	143	115	(146)	
	H_2	8.4	8.4	8.5	7.4	ŀ	
	H_8	7.5	7.5	7.7	7.0)	_
	N_1	-134	-134	-135	-143	(-118)	1
	N_3	-142	-142	-146	-152	(-127)	
	N ₆	-319	-319	-327	-285	(-332)	
	N_7	-129	-129	-132	-154	(-129)	
	N ₉	-235	-235	-240	-217	(-240)	
	C _t	177	177	175	7		
TMS	H_t	31.3	31.3	31.3	30.6	ex	Ternal
MeNO ₂	N _n	-159	-159	-166	-299	ret	erence
benz.	C_b			37	-99	-	
pyrid.	N_{py}			-119	-227		
pyrrol	N_{pr}			77	-79		
alinine	N _a			171	-8		

PP correction $\delta(X) = \sigma(X_{ref}) - \sigma(X) + \delta(X_{ref})$

Hydrated Adenine

QM/MM with 827 H2O: snapshot from classical MD

QM water for proper description of solute/solvent h-bonds

		CP2K IGAIM BLYP/cc-p-VQZ		
	ISO	W0	W3	W5
C ₂	164	164	166	166
C_4	148	148	148	148
C ₅	120	120	120	120
C ₆	160	160	159	159
C ₈	145	152	154	154
H_2	7.8	7.8	7.8	7.9
H_8	7.7	8.3	8.2	8.4
N_1	-115	-129	-128	-125
N ₃	-127	-147	-144	-145
N ₆	-330	-330	-318	-317
N_7	-121	-144	-147	-149
N ₉	-249	-237	-226	-223