

Optimisation of Basis Sets and Pseudopotentials

Sanliang Ling

University College London

4th CP2K Tutorial, 31st August – 4th September 2015, Zurich

Electronic structure methods in CP2K

GPW: Gaussian and plane waves method

- -Goedecker-Teter-Hutter pseudopotentials
- -Gaussian basis sets for valence electrons

GAPW: Gaussian and augmented plane waves method

-all electron calculations

LCAO

LCAO: Linear Combination of Atomic Orbitals

Gaussian type orbitals (GTOs)

$$\chi_{\zeta,l_x,l_y,l_z}(x, y, z) = N x^{l_x} y^{l_y} z^{l_z} e^{-\zeta r^2}$$
normalisation
constant
exponent:
width of orbital

sum of I_x , I_y , I_z determines type of orbital: 0 for *s*, 1 for *p*, 2 for *d*, 3 for *f*, etc

Contracted basis sets

 $\chi(\text{CGTO}) = \sum_{i}^{k} a_{i} \chi_{i}(\text{PGTO})$ contraction coefficient

(to be optimised)

Polarisation function

> basis functions with higher angular momentum (than

the valence orbital)

- First shell of polarisation functions are most important
- > *p*-function for H-Be, *d*-function for B-Ca, etc
- > adds additional flexibility to the basis set, provides

better descriptions to bonding

Diffuse function

- > basis function with small exponent
- better representation of the "tail" of the wavefunction
- > important for loosely bound electrons (anions or
 - excited state) and molecules in the gas phase

All-electron basis set for GAPW calculations

- Pople style basis sets (e.g. 6-31G*, etc)
- Correlation consistent basis sets (aug-cc-pVDZ, etc)
 and more

see \$CP2K/cp2k/data, 'ALL_BASIS_SETS' and 'EMSL_BASIS_SETS' additional all-electron basis sets can be found from EMSL Basis Set Exchange, see https://bse.pnl.gov/bse/portal

Potential needs to be defined in &KIND section for GAPW calculations, see \$CP2K/cp2k/data/POTENTIAL, choose "ALL" potential

Basis set for GPW calculations

- MOLOPT basis sets: basis sets optimised from molecular calculations, see 'BASIS_MOLOPT'
- 'DZVP-MOLOPT-SR-GTH' for solids ('SR' denotes shorter range, i.e. less and thus less diffuse primitives)
- > always check the basis set convergence (DZVP/TZVP/...)
- > do not use SZV for production run
- > more basis sets for GTH pseudos can be found in

'BASIS_ZIJLSTRA' and 'GTH_BASIS_SETS'

> all basis set files can be found in \$CP2K/cp2k/data

Basis set construction

- Trade-off between computational cost and accuracy
- > route for systematic improvements (SZV/DZVP/TZVP/TZV2P/...)
- same basis set should perform in various chemical environments, e.g. from isolated molecules to solids
- Iead to well conditioned overlap matrices (suitable for linear scaling calculations)
- > condition number: ratio of the largest to smallest eigenvalue of the overlap matrix

VandeVondele & Hutter, J. Chem. Phys., 127, 114105 (2007)

MOLOPT basis set

	CP2K	All-electron (Gaussian/NWCHEM)
	SZV	STO-3G
ר ייייי כ	DZVP	6-31G*
limited	TZVP	6-311G*
availability	TZV2P	6-311G(2df, 2pd)

SZV: single-zeta valence, i.e. one contracted function per orbital

DZVP: double-zeta valence, i.e. two contracted functions per orbital plus one set of polarisation functions with $I = I_{max} + 1$

TZVP/TZV2P: triple-zeta valence, i.e. three contracted functions per

orbital plus one/two set of polarisation functions with $I = I_{max} + 1$

MOLOPT basis set format

Basis set optimisation

> number of Gaussian exponents (to be determined

before optimisation)

- > number of basis functions per angular momentum
- > choice of training molecules (transferability)
- > strategy of basis set optimisation, e.g. whether or not

to optimise different basis sets concurrently

> weight of condition number in optimisation

Choice of training molecules

- Small molecules formed with different elements and with different coordination environments
- > preferably with only two elements (including the target element) in each molecule
- > a good source of small molecules (with optimised geometries) can be found in the Supporting Information of "Ahlrichs et al., Phys. Chem. Chem. Phys., 7, 3297 (2005)"

Basis set optimisation: MOLOPT

VandeVondele & Hutter, J. Chem. Phys., 127, 114105 (2007)

Basis optimisation with OPTIMIZE_BASIS

Basis optimisation with OPTIMIZE_BASIS

- Reference (Complete) basis set
 - check GTH-def2-QZVP and aug-GTH-def2-QZVP included in \$CP2K/cp2k/data/BASIS_ADMM
 - generate uncontracted basis sets with the ATOM code (see Marcella's slides and examples in \$CP2K/cp2k/tests/ATOM)

- Molecular calculations
 - use reference basis sets for all elements
 - avoid homonuclear diatomic molecules
 - use equilibrium geometry (i.e. GEO_OPT)

Generate uncontracted basis set with ATOM

&GLOBAL PROJECT Na						
PROGRAM_NAME	ΑΤΟΜ					
&END GLOBAL						
&ATOM						
ELEMENT Na						
RUN_TYPE BASIS_	OPTIMIZATIO	N				
ELECTRON_CONFI	GURATION C	ORE 2s2 2p6 3	ls1			
CORE 1s2						
MAX_ANGULAR_M	OMENTUM 1					
&METHOD						
METHOD_TYPE I	KOHN-SHAM					
&XC						
&XC_FUNCTION	AL PBE					
&END XC_FUNC	TIONAL					
&END XC						
&END METHOD						
&OPTIMIZATION						
EPS_SCF 1.e-8						
&END OPTIMIZATIO)N					
&PP_BASIS						
NUM_GTO 6 6						
S_EXPONENTS	7.92602574	5.92602574	1.59655262	0.71279902	0.28969807	4.00675308
P_EXPONENTS	7.92602574	5.92602574	1.59655262	0.71279902	0.28969807	4.00675308
&END PP_BASIS						
&POTENTIAL						
PSEUDO_TYPE G	TH					
POTENTIAL_FILE_	NAME POTEN	ITIAL				
POTENTIAL_NAME	E GTH-PBE-q9					
&END POTENTIAL						
&POWELL	•					
ACCURACY 1.e-	8					
STEP_SIZE 1.0						
&END POWELL						
&END ATOM						

Generate uncontracted basis set with ATOM

Orbital energies	State	L	Occupation	Energy[a.u.]	Energy[eV]
	1	0	2.000	-2.092687	-56.944917
	2	0	1.000	-0.098547	-2.681599
	1	1	6.000	-1.047513	-28.504279
DOMETTI Number of		1 .			070
POWELL Number of		i evalu	lations		47 1 600000007
POWELLI Final Val	ue or rur	lCtion			-47.1609800227
Optimized Basis					
*****	**** Unco	ontract	ed Gaussian T	vpe Orbitals *****	****
	01100		,ou oudobium i	Ipo orditodito	
s Exponents:			1		3.37371675
			2		1.19458113
			3		21.63024049
			4		0.39968861
			5		8.84460076
			6		0.04267359
p Exponents:			1		3.37371675
			2		1.19458113
			3		21.63024049
			4		0.39968861
			5		8.84460076
			6		0.04267359
****	******	k de de de de de	*****	*****	*****

[sling@klk	o231 Na]\$ 🤉	grep "	'Final"	Na.out.*		
Na.out.4:	POWELL F:	'inal v	value of	function	-4	7.0387118701
Na.out.5:	POWELL F:	'inal v	value of	function	-4	7.1463995925
Na.out.6:	POWELL F:	'inal v	value of	function	-4	7.1609800227
Na.out.7:	POWELL F:	'inal v	value of	function	-4	7.1637208082
Na.out.8:	POWELL F:	'inal v	value of	function	-4	7.1647939416
Na.out.9:	POWELL F:	'inal v	value of	function	-4	7.1649267320

Generate uncontracted basis set with ATOM

Na CBS

8 2021111 23.51400109 1.0 1.0 1.0 2021111 11.54276369 1.0 1.0 1.0 2021111 4.98513381 1.0 1.0 1.0 2021111 2.06401264 1.0 1.0 1.0 2021111 0.83224580 1.0 1.0 1.0 2021111 0.31900235 1.0 1.0 1.0 2021111 0.06577574 1.0 1.0 1.0 2021111 0.02386738 1.0 1.0 1.0

GTH-def2-QZVP basis set

Input Structure: OPTIMIZE_BASIS

Basis optimisation with OPTIMIZE_BASIS

BASOPT	Information at	iteration number: 390		
BASOPT	Training set	Combination Rho difference Condition num		Time
BASOPT				
BASOPT	1	1 0.36863360E-02 0.46570176E+0	2	2.804
BASOPT	2	1 0.12483294E-01 0.16639694E+0	3	1.371
BASOPT	3	1 0.39469184E-02 0.97623037E+0	2	1.580
BASOPT	4	1 0.45506749E-02 0.14458737E+0	3	2.067
BASOPT				
BASOPT	Total residuum	value:14866668E+02		
BASOPT	Information at	iteration number: 400		
BASOPT	Training set	Combination Rho difference Condition num		Time
BASOPT				
BASOPT	1	1 0.36863752E-02 0.46570547E+0	2	2.876
BASOPT	2	1 0.12483327E-01 0.16639794E+0	3	1.400
BASOPT	3	1 0.39468986E-02 0.97623212E+0	2	1.627
BASOPT	4	1 0.45506441E-02 0.14458778E+0	3	2.120
BASOPT				
BASOPT	Total residuum	value:14866668E+02		
		DBCSR STATISTICS		
COUNTER		CPU G	PIT	CDU9

Basis set superposition error

- MOLOPT basis sets are incomplete
- BSSE correction using the Boys and Bernardi counterpoise correction scheme

Boys & Bernardi, Mol. Phys., 19, 553 (1970)

- useful for binding energy calculations, etc
- use larger basis sets to reduce BSSE

```
&GLOBAL
 PROJECT_NAME project
 RUN TYPE BSSE
&END GLOBAL
&FORCE EVAL
 &BSSE
  &FRAGMENT
   LIST 1..272
  & END FRAGMENT
  &FRAGMENT
   LIST 273..368
  & END FRAGMENT
 &END BSSE
 SCF GUESS ATOMIC
 &KIND H_ghost
   BASIS SET DZVP-MOLOPT-SR-GTH
   GHOST
 &END KIND
```


Pseudopotentials

Goedecker-Teter-Hutter (GTH) pseudopotentials

 r_{loc} : range of Gaussian ionic charge distribution

Pseudopotentials

$$V_{nl}^{PP}(\mathbf{r}, \mathbf{r}') = \sum_{lm} \sum_{ij} \langle \mathbf{r} \mid p_i^{lm} \rangle h_{ij}^l \langle p_j^{lm} \mid \mathbf{r}' \rangle$$

Non-local part $\lim_{lm} i_j \langle \mathbf{r} \mid p_i^{lm} \rangle h_{ij}^l$ coefficients

GTH pseudopotential format

GTH pseudopotential

- > LDA (PADE): H-Rn (including lanthanides)
- PBE: H-Rn (excluding lanthanides)
- > PBEsol: H-Kr (plus a few selected)
- > BP: H-Kr (plus a few selected)
- > HCTH: a few selected elements
- > Non-linear core corrected (NLCC) pseudopotentials:
 - a few selected elements

All pseudopotentials can be found in \$CP2K/cp2k/data, see 'POTENTIAL', 'GTH_POTENTIALS' and 'NLCC_POTENTIALS'

Pseudopotentials optimisation

All-electron calculation using a chosen DFT functional

Choosing a form of the pseudopotential to be fitted

Minimising the differences between eigenvalues and charges within an atomic sphere of the allelectron atom and the pseudo atom

Pseudopotentials optimisation with ATOM

Example: optimise pseudopotential of O using PBE0

&GLOBAL PROGRAM NAME ATOM &END GLOBAL &ATOM ELEMENT O RUN TYPE PSEUDOPOTENTIAL OPTIMIZATION ELECTRON CONFIGURATION [He] 2s2 2p4 CORE [He] MAX ANGULAR MOMENTUM 2 COULOMB INTEGRALS ANALYTIC EXCHANGE INTEGRALS ANALYTIC &METHOD METHOD TYPE KOHN-SHAM **RELATIVISTIC DKH(2)** &XC **&XC FUNCTIONAL PBE0** &END XC FUNCTIONAL &FND XC &END METHOD

& OPTIMIZATION EPS SCF 1.e-10 **&END OPTIMIZATION** &PRINT **&BASIS SET** &END &FND &AE BASIS BASIS TYPE GEOMETRICAL GTO &END AE BASIS &PP BASIS BASIS TYPE GEOMETRICAL GTO &END PP BASIS **&POTENTIAL** PSEUDO TYPE GTH POTENTIAL FILE NAME POTENTIAL POTENTIAL NAME GTH-PBE-q6 &FND POTENTIAL &POWELL ACCURACY 1.e-10 STEP SIZE 0.5 WEIGHT PSIR0 0.1 **&END POWELL &END ATOM**

Pseudopotentials optimisation with ATOM

POW	IELL	Fin	al errors of	target values		
Ref	erer	nce c	configuration	1	Method number	1
	L	N	Occupation	Eigenvalue [eV]	dE [eV]	dCharge
	0	1	2.00	-26.0500594476	0.000072[0]	-0.000034[3]
	0	2	0.00	5.7901112679	-0.001447[0]	0.000149[0]
	0	3	0.00	15.4862366222	-0.004456[0]	0.000417[0]
	1	1	4.00	-8.7389403636	0.000114[1]	0.000195[96]
	1	2	0.00	8.4179458225	0.000184[0]	-0.000050[0]
	1	3	0.00	17.3085598983	0.001142[0]	-0.000133[0]
	2	1	0.00	10.9106631896	0.000775[0]	-0.000018[0]
	s-st	tates	5 N= 1	Wavefun	ction at r=0:	-0.000000[0]
	s-st	tates	s N= 2	Wavefun	ction at r=0:	-0.024849[0]
	s-st	tates	s N= 3	Wavefun	ction at r=0:	-0.045189[0]

Pseudopotentials optimisation with the standalone ATOM code

> check 'README_quick_GTH' in \$CP2K/potentials,

more details in Dr Matthias Krack's slides

Matthias Krack, 1st CP2K Tutorial, Zurich, 2009

> more options for quality check

A few final remarks ...

- read the original references on basis sets and pseudopotentials before making your own basis sets and pseudopotentials
- > do plenty of tests on optimised basis sets and pseudopotentials and compare the results with reference values before production run
- All data files used by CP2K can be downloaded directly from <u>http://sourceforge.net/p/cp2k/code/HEAD/tree/trunk/cp2k/data/</u>

Further Reading

Accuracy and Efficiency (by Dr Matthias Krack)

http://www.cecam.org/upload/talk/presentation 3002.pdf

Basis Sets and Pseudo-Potentials (by Dr Fawzi Mohamed) http://www.cecam.org/upload/talk/presentation_2994.pdf