

Efficient & Reliable Hybrid DFT Calculations with ADMM

Sanliang Ling and Ben Slater

Email: S.Ling@ucl.ac.uk

Department of Chemistry University College London

Second Annual CP2K-UK Users Meeting, London, 6th February 2015

Hybrid DFT Calculations with CP2K

- ADMM: Auxiliary Density Matrix Methods for Hartree-Fock Exchange Calculations
- Total energy as a functional of the electron density

 $E[\rho] = T_{\rm s}[\rho] + J[\rho] + E_{\rm xc}[\rho] + \int v(\mathbf{r}) \,\rho(\mathbf{r}) \,\mathrm{d}\mathbf{r}$

 Exchange-correlation energy with a hybrid functional

 $E_{\rm xc}[\rho] = \alpha E_{\rm x}^{\rm HFX}[\{\psi_i\}] + (1 - \alpha) E_{\rm x}^{\rm DFT}[\rho] + E_{\rm c}^{\rm DFT}[\rho]$

ADMM in CP2K

Hartree-Fock exchange energy

 $E_{\mathbf{x}}^{\mathrm{HFX}}[P] = -\frac{1}{2} \sum_{\lambda \sigma \mu \nu} P^{\mu \sigma} P^{\nu \lambda}(\mu \nu | \lambda \sigma) \longrightarrow \text{scales as } N^{4}$ $P^{\mu \nu} = \sum_{i} C^{\mu i} C^{\nu i} \Leftrightarrow P = C C^{T}$ $(\mu \nu | \lambda \sigma) = \int \int \phi_{\mu}(\mathbf{r}_{1}) \phi_{\nu}(\mathbf{r}_{1}) g(|\mathbf{r}_{2} - \mathbf{r}_{1}|) \phi_{\lambda}(\mathbf{r}_{2}) \phi_{\sigma}(\mathbf{r}_{2}) d\mathbf{r}_{1} \mathbf{r}_{2}$

- Introducing auxiliary density matrix $\hat{P} \approx P$ $E_x^{\text{HFX}}[P] = E_x^{\text{HFX}}[\hat{P}] + (E_x^{\text{HFX}}[P] - E_x^{\text{HFX}}[\hat{P}])$ $\approx E_x^{\text{HFX}}[\hat{P}] + (E_x^{\text{DFT}}[P] - E_x^{\text{DFT}}[\hat{P}])$
- How to construct auxiliary basis set?
 - smaller in size (i.e. less number of basis functions)
 - more rapidly decaying (i.e. bigger Gaussian exponents)

J. Chem. Theory Comput., 6, 2348 (2010)

ADMM in CP2K

Choice of auxiliary basis set for ADMM

- FIT3: three Gaussian exponents for each valence orbital
- cFIT3: a contraction of FIT3 (i.e. fixed linear combinations of Gaussian functions)
- pFIT3: FIT3 + polarization functions (i.e. higher angular momentum functions) _____ exponents taken from 6-31G** (unoptimised)
- cpFIT3: cFIT3 + polarization functions
- aug-FIT3, aug-cFIT3, aug-pFIT3, aug-cpFIT3: augmented with a "diffuse" function (i.e. smaller Gaussian exponents)
- FIT3 as trial ADMM basis

ADMM in CP2K

1A																	8A
1																	2
н																	He
1s ¹	2A											3A	4A	5A	6A	7A	1s ²
3	4											5	6	7	8	9	10
L i	Re											B	Ċ	Ň	Ō	F	Ne
1s ² 2s ¹	1s ² 2s ²											1s ² 2s ² n ¹	1s ² 2s ² n ²	1s ² 2s ² n ³	15 ² 25 ² n ⁴	1s ² 2s ² n ⁵	1s ² 2s ² n ⁶
11	12											13	14	15	16	17	18
Na	Ma											Δι	Si	P	S	CI	Δr
INCI	[Nia]3e2	38	4B	58	6B	78		8B		10	28	[No13c ² c ¹	[Nio12c ² p ²	[Nio12o ² o ³	[Nio12c ² c ⁴	[Nio13o ² p ⁵	[Nio13c ² n ⁶
[10]03	20	21	40	30	24	25	26	27	- 78		20	[146]55 þ	[146]93 b	[146]33 þ	[146]55 þ	25	[Ne]55 p
		So.	Ti	23		Mp	Eo	$\hat{\mathbf{C}}_{\mathbf{C}}$	NI	<u> </u>		Ga	G		5- 5-	Dr	Joo Kr
N	Ud	SC market 2	10-121-2	V			гe					Ga	Ge	AS	JE	DI	NI
[Ar]4s	[Ar]4s ⁻	[Ar]3d'4s	[Ar]30-45-	[Ar]3d"4s"	[Ar]3d ⁻ 4s'	[Ar]3d"4s"	[Ar]3d ⁻ 4s ⁻	[Ar]3d 4s	[Ar]3d ⁻ 4s ⁻	[Ar]3d 4s	[Ar]3d 4s	[Ar]3d 4s ⁻ p	[Ar]3d 4s ⁻ p ⁻	[Ar]3d 4s ⁻ p ⁻	[Ar]3d 4s ⁻ p	Ari3d 4sth	[Ar]3d 4s ⁻ p ⁻
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Хе
[Kr]5s ¹	[Kr]5s ²	[Kr]4d ¹ 5s ²	[Kr]4d ² 5s ²	[Kr]4d ⁴ 5s ¹	[Kr]4d ⁵ 5s ¹	[Kr]4d ⁵ 5s ²	[Kr]4d ⁷ 5s ¹	[Kr]4d ⁸ 5s ¹	[Kr]4d ¹⁰	[Kr]4d ¹⁰ 5s ¹	[Kr]4d ¹⁰ 5s ²	[Kr]4d ¹⁰ 5s ² p ¹	[Kr]4d ¹⁰ 5s ² p ²	[Kr]4d ¹⁰ 5s ² p ³	[Kr]4d ¹⁰ 5s ² p ⁴	[Kr]4d ¹⁰ 5s ² p ⁵	[Kr]4d ¹⁰ 5s ² p ⁶
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
[Xe]6s ¹	[Xe]6s ²	Lanthanides	[Xe]4f ¹⁴ 5d ² 6s ²	[Xe]4f ¹⁴ 5d ³ 6s ²	[Xe]4f ¹⁴ 5d ⁴ 6s ²	[Xe]4f ¹⁴ 5d ⁶ 6s ²	[Xe]4f ¹⁴ 5d ⁶ 6s ²	[Xe]4f ¹⁴ 5d ⁷ 6s ²	[Xe]4f ¹⁴ 5d ⁹ 6s ¹	[Xe]4f ¹⁴ 5d ¹⁰ 6s ¹	[Xe]4f ¹⁴ 5d ¹⁰ 6s ²	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² p ¹	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² p ²	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² p ³	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² p ⁴	[Xe]4f ¹⁴ 5d ¹⁰ 6s ² p ⁵	[Xe]4f ⁴⁴ 5d ¹⁰ 6s ² p ⁶
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sq	Bh	Hs	Mt	Ds	Rq	Cn	Uut	FI	Uup	Lv	Uus	Uuo
[Rn]7s ¹	[Rn]7s ²	Actinides	[Rn]5f ¹⁴ 6d ² 7s ² *	[Rn]5f ¹⁴ 6d ³ 7s ² *	[Rn]5f ¹⁴ 6d ⁴ 7s ² *	[Rn]5f ¹⁴ 6d ⁵ 7s ² *	[Rn]5f ¹⁴ 6d ⁶ 7s ² *	[Rn]5f ¹⁴ 6d ⁷ 7s ² *	[Rn]5f ¹⁴ 6d ⁹ 7s ¹ *	[Rn]5f ¹⁴ 6d ¹⁰ 7s ¹ *	[Rn]5f ¹⁴ 6d ¹⁰ 7s ² *	[Rn]5f ¹ 6d ¹⁰ 7s ² 7p ¹ *	[Rn]5f ¹⁺ 6d ¹⁰ 7s ² 7p ² *	[Rn]5f ¹⁴ 6d ¹⁰ 7s ² 7p ³	[Rn]5f ¹⁺ 6d ¹⁰ 7s ² 7p**	[Rn]5f ¹ 6d ¹⁰ 7s ² 7p ⁵ *	[Rn]5f ¹⁺ 6d ¹⁰ 7s ² 7p ⁶ *

Limited availability of ADMM basis sets

UCL

ADMM basis sets for transition metals

1A	_																8A
1																	2
н																	Не
1s ¹	2A											3A	4A	5A	6A	7A	1s ²
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
1s²2s¹	1s²2s²											1s ² 2s ² p ¹	1s²2s²p²	1s²2s²p³	1s²2s²p⁴	1s²2s²p⁵	1s²2s²p ⁶
11	12											13	14	15	16	17	18
Na	Ma											AI	Si	Р	S	CI	Ar
[Ne]3s ¹	[Ne]3s²	3B	4B	5B	6B	7B		<u> </u>		1B	2B	[Ne]3s ² p ¹	[No]3c ² p ²	[No]3s ² n ³	[No]3c ² n ⁴	[No]3s ² n ⁵	[Ne]3s ² p ⁶
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
															-		
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
K [Ar]4s ¹	Ca [Ar]4s ²	Sc [Ar]3d ¹ 4s ²	Ti [Ar]3d ² 4s ²	V [Ar]3d ³ 4s ²	Cr [Ar]3d ⁵ 4s ¹	Mn [Ar]3d ⁵ 4s ²	Fe [Ar]3d ⁶ 4s ²	Co [Ar]3d ⁷ 4s ²	Ni [Ar]3d ⁸ 4s ²	Cu [Ar]3d ¹⁰ 4s ¹	Zn [Ar]3d ¹⁰ 4s ²	Ga [Ar]3d ¹⁰ 4s ² p ¹	Ge [Ar]3d ¹⁰ 4s ² p ²	As [Ar]3d ¹⁰ 4s ² p ³	Se [Ar]3d ¹⁰ 4s ² p ⁴	Br [Ar]3d ¹⁰ 4s ² p ⁵	Kr Ar]3d ¹⁰ 4s ² p ⁶
K [Ar]4s ¹ 37	Ca _{[Ar]4s² 38}	Sc [Ar]3d ¹ 4s ² 39	Ti [Ar]3d²4s² 40	V [Ar]3d ³ 4s ² 41	Cr [Ar]3d ^{\$} 4s ¹ 42	Mn [Ar]3d ⁵ 4s ² 43	Fe [Ar]3d ⁶ 4s ² 44	Co [Ar]3d ⁷ 4s ²	Ni [Ar]3d ⁸ 4s ²	Cu [Ar]3d ¹⁰ 4s ¹	Zn [Ar]3d ¹⁰ 4s ² 48	Ga _{[Ar]3d¹⁰4s²p¹ 49}	Ge [Ar]3d ¹⁰ 4s ² p ² 50	As [Ar]3d ¹⁰ 4s ² p ³	Se [Ar]3d ¹⁰ 4s ² p ⁴ J2	Br [Ar]3d ¹⁰ 4s ² p ⁵	Kr _{Ar]3d¹⁰4s²p⁶ 54}
K [Ar]4s ¹ 37 Rb	Ca _{[Ar]4s² 38 Sr}	Sc [Ar]3d ¹ 4s ² 39 Y	Ti ^{[Ar]3d²4s² 40 Zr}	V [Ar]3d ³ 4s ² 41 Nb	Cr _{[Ar]3d⁵4s¹ 42 Mo}	Mn [Ar]3d ⁵ 4s ² 43 TC	Fe ^{[Ar]3d⁶4s² 44 Ru}	Co [Ar]3d ⁷ 4s ²	Ni _{[Ar]3d⁸4s² 40 Pd}	Cu [Ar]3d ¹⁰ 4s ¹	Zn _{[Ar]3d¹⁰4s² 48 Cd}	Ga ^{[Ar]3d¹⁰4s²p¹ 49 In}	Ge ^{[Ar]3d¹⁰4s²p² 50 Sn}	As [Ar]3d ¹⁰ 4s ² p ³ Sb	Se [Ar]3d ¹⁰ 4s ² p ⁴ J2 Te	Br [Ar]3d ¹⁰ 4s ² p ⁵ 33 1	Kr ^{Ar]3d¹⁰4s²p⁶ 54 Xe}
K [Ar]4s ¹ 37 Rb [Kr]5s ¹	Ca [Ar]4s ² 38 Sr [Kr]5s ²	Sc [Ar]3d ¹ 4s ² 39 Y [Kr]4d ¹ 5s ²	Ti [Ar]3d ² 4s ² 40 Zr [Kr]4d ² 5s ²	V [Ar]3d ³ 4s ² 41 Nb [Kr]4d ⁴ 5s ¹	Cr [Ar]3d ⁵ 4s ¹ 42 Mo [Kr]4d ⁵ 5s ¹	Mn [Ar]3d ⁵ 4s ² 43 Tc [Kr]4d ⁵ 5s ²	Fe [Ar]3d ⁸ 4s ² 44 Ru [Kr]4d ⁷ 5s ¹	Co [Ar]3d ⁷ 4s ² 40 Rh [Kr]4d ⁸ 5s ¹	Ni [Ar]3d ⁸ 4s ² 40 Pd [Kr]4d ¹⁰	Cu [Ar]3d ¹⁰ 4s ¹ 47 Ag [Kr]4d ¹⁰ 5s ¹	Zn [Ar]3d ¹⁰ 4s ² 48 Cd <r]4d<sup>105s²</r]4d<sup>	Ga [Ar]3d ¹⁰ 4s ² p ¹ 49 In [Kr]4d ¹⁰ 5s ² p ¹	Ge [Ar]3d ¹⁰ 4s ² p ² 50 Sn [Kr]4d ¹⁰ 5s ² t	As [Ar]3d ¹⁰ 4s ² p ³ Sb [Kr]4d ¹⁰ 5s ² p ³	Se [Ar]3d ¹⁰ 4s ² p ⁴ J2 Te [Kr]4d ¹⁰ 5s ² p ⁴	Br [Ar]3d ¹⁰ 4s ² p ⁵ 33 1 [Kr]4d ¹⁰ 5s ² p ⁵	Kr ^{Ar]3d¹⁰4s²p⁶ 54 Xe [Kr]4d¹⁰5s²p⁶}
K [Ar]4s ¹ 37 Rb [Kr]5s ¹ 55	Са ^{[Ar]4s² 38 Sr _{[Kr]5s²} 56}	Sc [Ar]3d ¹ 4s ² 39 Y [Kr]4d ¹ 5s ² 5/-/1	Ti [Ar]3d ² 4 <i>s</i> ² 40 Zr [Kr]4d ² 5 <i>s</i> ² 72	V [Ar]3d ³ 4s ² 41 Nb [Kr]4d ⁴ 5s ¹ 73	Cr [Ar]3d ⁵ 4s ¹ 42 Mo [Kr]4d ⁵ 5s ¹ 74	Mn [Ar]3d ⁵ 4s ² 43 TC [Kr]4d ⁵ 5s ² 75	Fe [Ar]3d ⁸ 4s ² 44 Ru [Kr]4d ⁷ 5s ¹ 75	Co [Ar]3d ⁷ 4s ² Rh [Kr]4d ⁸ 5s ¹ 77	Ni [Ar]3d ⁸ 4s ² 40 Pd [Kr]4d ¹⁰ 78	Cu [Ar]3d ¹⁰ 4s ¹ 47 Ag [Kr]4d ¹⁰ 5s ¹ 79	Zn [Ar]3d ¹⁰ 4s ² 48 Cd (r]4d ¹⁰ 5s ² 80	Ga [Ar]3d ¹⁰ 4s ² p ¹ 49 In [Kr]4d ¹⁰ 5s ² p ¹ 81	Ge [Ar]3d ¹⁰ 4s ² p ² 50 Sn [Kr]4d ¹⁰ 5s ² 1	As [Ar]3d ¹⁰ 4s ² p ³ Sb [Kr]4d ¹⁰ 5s ² p ³ 83	Se [Ar]3d ¹⁰ 4s ² p ⁴ 32 Te [Kr]4d ¹⁰ 5s ² p ⁴ 84	Br [Ar]3d ¹⁰ 4s ² p ⁵ 35 I [Kr]4d ¹⁰ 5s ² p ⁵ 85	Kr Ar]3d ¹⁰ 4s ² p ⁶ 54 Xe [Kr]4d ¹⁰ 5s ² p ⁶ 86
K [Ar]4s ¹ 37 Rb [Kr]5s ¹ 55 Cs	Ca [Ar]45 ² 38 Sr [Kr]55 ² 36 Ba	Sc [Ar]3d ¹ 4s ² 39 Y [Kr]4d ¹ 5s ² 57-71	Ti [Ar]3d ² 4s ² 40 Zr [Kr]4d ² 5s ² 72 Hf	V [Ar]3d ³ 4s ² 41 Nb [Kr]4d ⁴ 5s ¹ 73 Ta	Cr [Ar]3d ⁶ 4s ¹ 42 MO [Kr]4d ⁵ 5s ¹ 74 W	Mn [Ar]3d ⁶ 4s ² 43 TC [Kr]4d ⁵ 5s ² 75 Re	Fe [Ar]3d ⁶ 4s ² 44 Ru [Kr]4d ⁷ 5s ¹ 76 OS	Co [Ar]3d ⁷ 4s ² 43 Rh [Kr]4d ⁹ 5s ¹ 77 Ir	Ni [Ar]3d ⁸ 4s ² Pd [Kr]4d ¹⁰ 78 Pt	Cu [Ar]3d ¹⁰ 4s ¹ 47 Ag [Kr]4d ¹⁰ 5s ¹ 79 Au	Zn [Ar]3d ¹⁰ 4s ² 48 Cd (r]4d ¹⁰ 5s ² 80 Hg	Ga [Ar]3d ¹⁰ 45 ² p ¹ 49 In [Kr]4d ¹⁰ 55 ² p ¹ 81 TI	Ge [Ar]3d ¹⁰ 4s ² p ² 50 Sn [Kr]4d ¹⁰ 5s ² 1 82 Pb	As [Ar]3d ¹⁰ 4s ² p ³ 51 Sb [Kr]4d ¹⁰ 5s ² p ³ 83 Bi	Se [Ar]3d ¹⁰ 4s ² p ⁴ 32 Te [Kr]4d ¹⁰ 5s ² p ⁴ 84 PO	Br [Ar]3d ¹⁰ 4s ² p ⁵ 35 I [Kr]4d ¹⁰ 5s ² p ⁵ 85 At	Kr Ar]3d ¹⁰ 4s ² p ⁶ 54 Xe [Kr]4d ¹⁰ 5s ² p ⁶ 86 Rn
К [Ат]45 ¹ 37 Rb [Кт]55 ¹ 55 СS [Хо]85 ¹	Ca [Ar]45 ² 38 Sr [Kr]55 ² 56 Ba [Xe]65 ²	Sc [Ar]3d ¹ 4s ² 39 Y [Kr]4d ¹ 5s ² 5/-/1 Lanthanides	Ti [Ar]3d#4s ² 40 Zr [Kr]4d ² 5s ² 72 Hf xetut ¹⁴ 5d ² 6s ²	V [Ar]3d ³ 4s ² 41 Nb [Kr]4d ⁴ 5s ¹ 73 Ta Velut ¹⁴ 5d ⁵ 8 ²	Cr [Ar]3d ⁵ 4s ¹ 42 MO [Kr]4d ⁵ 5s ¹ 74 W	Mn [Ar]3d ⁶ 4s ² 43 TC [Kr]4d ⁶ 5s ² 75 Re (e)4r ¹⁴ 5d ⁶ 6s ²	Fe [Ar]3d ⁸ 4s ² 44 Ru [Kr]4d ⁷ 5s ¹ 75 OS [Xe]4t ¹⁴ 5d ⁶ 6s ²	Co [Ar]3d ⁷ 4s ² Rh [Kr]4d ⁸ 5s ¹ 77 Ir [Xe]4r ¹⁴ 5d ⁷ 6s ²	Ni [Ar]3d ⁸ 4s ² Pd [Kr]4d ¹⁰ 78 Pt [Xe]4r ¹⁴ 5d ⁹ 6s ¹	Cu [Ar]3d ¹⁰ 4s ¹ 47 Ag [Kr]4d ¹⁰ 5s ¹ 79 Au [Xe]4f ¹⁴ 5d ¹⁰ 6s ¹	Zn [Ar]3d ¹⁰ 4s ² 48 Cd (r]4d ¹⁰ 5s ² 80 Hg [Xe]4t ¹⁴ 5d ¹⁰ 6s ²	Ga [Ar]3d ¹⁰ 45 ² p ¹ 49 In [Kr]4d ¹⁰ 55 ² p ¹ 81 TI [Xe]4f ⁴⁵ d ^m 6s ² p ¹	Ge [Ar]3d ¹⁰ 4s ² p ² 50 Sn [Kr]4d ¹⁰ 5s ²] 82 Pb [Xe]4f ⁴¹ 5d ¹⁸ 6s ² p ²	As [Ar]3d ¹⁰ 4s ² p ³ Sb [Kr]4d ¹⁰ 5s ² p ³ 83 Bi [Xe]4f ⁴¹ 5d ⁴⁶ 5s ² p ²	Se [Ar]3d ¹⁰ 4s ² p ⁴ J2 Te [Kr]4d ¹⁰ 5s ² p ⁴ 84 PO [Xe]4f ⁴¹ 5d ¹⁶ 6s ² p ¹	Br [Ar]3d ¹⁰ 4s ² p ⁵ 1 [Kr]4d ¹⁰ 5s ² p ⁵ 85 At [Xe]4 ^{r4} 5d ¹⁶ 6s ² p ⁶	Kr Ar]3d ¹⁰ 4s ² p ⁶ 54 Xe [Kr]4d ¹⁰ 5s ² p ⁶ 86 Rn [Xe]4f ⁴¹ 5d ⁴⁰ 6s ² p ⁶
K [Ar]45 ¹ 37 Rb [Kr]55 ¹ 55 Cs [Va]6c ¹ 87	Ca [Ar]4s ² 38 Sr [Kr]5s ² 56 Ba [Xe]6s ² 88	Sc [Ar]3d ¹ 4s ² 39 Y [Kr]4d ¹ 5s ² 57-71 Lanthanides 89-103	Ti [Ar]3d ²⁴ s ² 40 Zr [Kr]4d ² 5s ² 72 Hf xetat ¹⁴ 5a ² 6s ² 104	V [Ar]3d ³ 4s ² 41 Nb [Kr]4d ⁴ 5s ¹ 73 Ta [Xe1ut ¹⁴ 5r ² 6s ² 105	Cr [Ar]3d ⁵ 4s ¹ 42 MO [Kr]4d ⁵ 5s ¹ 74 W [Kelut ¹⁴ 5d ⁶ 5s ² 106	Mn [Ar]3d ⁵ 4s ² 43 TC [Kr]4d ⁵ 5s ² 75 Re re 4r ¹⁴ 5d ⁶ 6s ² 107	Fe [Ar]3d ⁶ 4s ² 44 Ru [Kr]4d ⁷ 5s ¹ 76 OS [Xe]4t ⁴ 5c ⁶ 6s ² 108	Co [Ar]3d ⁷ 4s ² Rh [Kr]4d ⁸ 5s ¹ 77 Ir [Xe)µr ¹⁴ 5d ⁷ 6s ² 109	Ni [Ar]3d ⁸ 4s ² Pd [Kr]4d ¹⁰ 78 Pt [Xe]4r ¹⁴ 5d ⁶ 6s ¹ 110	Cu [Ar]3d ¹⁰ 4s ¹ 47 Ag [Kr]4d ¹⁰ 5s ¹ 79 Au [X8]4f ¹⁴ 5d ¹⁰ 6s ¹ 111	Zn [Ar]3d ¹⁰ 4s ² 48 Cd (r]4d ¹⁰ 5s ² 80 Hg [Xe]4r ¹⁴ 5d ¹⁰ 6s ² 112	Ga [Ar]3d ¹⁰ 4s ² p ¹ 49 In [Kr]4d ¹⁰ 5s ² p ¹ 81 TI [Xe]4f ⁴ 5d ¹⁰ 5s ² p ¹ 113	Ge [Ar]3d ¹⁰ 4s ² p ² 50 Sn [Kr]4d ¹⁰ 5s ² 82 Pb [Xe]4f ⁴⁵ d ⁴⁶ 6s ² p ² 114	As [Ar]3d ¹⁰ 4s ² p ³ Sb [Kr]4d ¹⁰ 5s ² p ³ 83 Bi [Xe]4f ⁴⁵ d ⁴⁶ 5s ² p ³ 115	Se [Ar]3d ¹⁰ 4s ² p ⁴ 32 Te [Kr]4d ¹⁰ 5s ² p ⁴ 84 PO [Xe]4f ⁴ 5d ¹⁰ 5s ² p ⁴ 116	Br [Ar]3d ¹⁰ 4s ² p ⁵ 35 1 [Kr]4d ¹⁰ 5s ² p ⁵ 85 At [Xe]4f ⁴ 5d ^m 5s ² p ⁶ 117	Kr Ar]3d ¹⁰ 4s ² p ⁶ 54 Xe [Kr]4d ¹⁰ 5s ² p ⁶ 86 Rn [Xe]4f ⁴ 5d ¹⁰ 6s ² p ⁶ 118
K [Ar]4s ¹ 37 Rb [Kr]5s ¹ 55 Cs IVal6c ¹ 87 Fr	Ca [Ar]45 ² 38 Sr [Kr]55 ² 56 Ba [Xe]65 ² 88 Ra	Sc [Ar]3d ¹ 4s ² 39 Y [Kr]4d ¹ 5s ² 57-71 Lanthanides 89-103	Ti [Ar]3d ² 4s ² 40 Zr [Kr]4d ² 5s ² 72 Hf xetar ¹⁴ 5a ² 6s ² 104 Rf	V [Ar]3d ³ 4s ² 41 Nb [Kr]4d ⁴ 5s ¹ 73 Ta IVEUR ¹⁴ 5n ² 6s ² 105 Db	Cr [Ar]3d ⁶ 4s ¹ 42 MO [Kr]4d ⁶ 5s ¹ 74 W IVelut ¹⁴ 5d ⁴ 6s ² 106 Sg	Mn [Ar]3d ⁶ 4s ² 43 TC [Kr]4d ⁵ 5s ² 75 Re re 4r ¹⁴ 5d ⁶ 5s ² 107 Bh	Fe [Ar]3d ⁶ 4s ² 44 Ru [Kr]4d ⁷ 5s ¹ 75 OS [Xe]4r ¹⁴ 5d ⁶ 6s ² 108 HS	Co [Ar]3d ⁷ 4s ² 77 [Kr]4d ⁸ 5s ¹ 77 Ir [Xej4r ¹⁴ 5d ² 6s ² 109 Mt	Ni [Ar]3d ⁸ 4s ² Pd [Kr]4d ¹⁰ 78 Pt [Xe]4r ¹⁴ 5d ⁹ 6s ¹ 110 DS	Cu [Ar]3d ¹⁰ 4s ¹ 47 Ag [Kr]4d ¹⁰ 5s ¹ 79 Au [Xe]4f ¹⁴ 5d ¹⁰ 6s ¹ 111 Rg	Zn [Ar]3d ¹⁰ 4s ² 48 Cd (r]4d ¹⁰ 5s ² 80 Hg [Xe]4r ¹⁴ 5d ¹⁰ 6s ² 112 Cn	Ga [Ar]3d ¹⁰ 45 ² p ¹ 49 In [Kr]4d ¹⁰ 55 ² p ¹ 81 TI [Xe]4f ⁴ 5d ¹⁰ 56 ² p ¹ 113 Uut	Ge [Ar]3d ¹⁰ 4s ² p ² 50 Sn [Kr]4d ¹⁰ 5s ² ; 82 Pb [Xe]4f ⁴ 5d ¹⁶ 5s ² p ² 114 FI	As [Ar]3d ¹⁰ 4s ² p ³ Sb [Kr]4d ¹⁰ 5s ² p ³ 83 Bi [Xe]4f ⁴ 5d ⁴⁶ 5s ² p ³ 115 Uup	Se [Ar]3d ¹⁰ 4s ² p ⁴ Jz Te [Kr]4d ¹⁰ 5s ² p ⁴ 84 PO [Xe]4f ⁴ 5d ¹⁰ 6s ² p ⁴ 116 LV	Br [Ar]3d ¹⁰ 4s ² p ⁵] [Kr]4d ¹⁰ 5s ² p ⁵ 85 At [Xe]4f ⁴¹ 5d ^m 6s ² p ⁶ 117 Uus	Kr Ar]3d ¹⁰ 4s ² p ⁶ 54 Xe [Kr]4d ¹⁰ 5s ² p ⁶ 86 Rn [Xe]4f ⁴ 5d ⁴⁰ 6s ² p ⁶ 118 Uuo

ADMM basis sets will be released in mid-2015! (Email: S.Ling@ucl.ac.uk)

ADMM basis sets for transition metals Uncontracted basis sets

- FIT10: 4s + 3p + 3d
- FIT11: $4s + 3p + 3d + 1d \rightarrow$ recommended for solids
- FIT12: 4s + 3p + 4d + 1d
- FIT13: 4s + 4p + 4d + 1d
- **Contracted basis sets (double-**ζ quality)
- cFIT10 / <u>cFIT11</u> / cFIT12 / cFIT13

All exponents were optimised, including the polarisation function

Some general suggestions

> Always check the convergence of <u>CUTOFF</u>

(see http://www.cp2k.org/howto:converging_cutoff)

- Always check the convergence of properties (e.g. lattice parameters, band gaps) with respect to <u>supercell sizes</u>
- Always start from pre-converged GGA (e.g. PBE) wavefunction and geometry
- Always check the convergence of primary and ADMM
 basis sets (start from a small basis and gradually
 increase the size)
- > ADMM has only been implemented for use with GPW

Work Flow

- 1. Convergence test (primary basis, CUTOFF, supercell, etc)
 - 2. GGA optimisation with selected primary basis
 - 3. Name GGA wave function file for use with ADMM
 - 4. Construct ADMM input with auxiliary basis (e.g. FIT3)
- 5. Run calculations and check convergence of ADMM basis

Input Structure: GGA/PBE

```
&DFT
```

```
BASIS_SET_FILE_NAME ./BASIS_MOLOPT
                                              (file can be found in $CP2K/cp2k/data)
        &XC
                &XC_FUNCTIONAL PBE
                &END XC FUNCTIONAL
        &END XC
&END DFT
&SUBSYS
        &KIND Si
                BASIS_SET DZVP-MOLOPT-SR-GTH
                POTENTIAL GTH-PBE-q4
        &END KIND
&END SUBSYS
```


Input Structure: ADMM

&DFT

```
BASIS SET FILE NAME ./BASIS MOLOPT
                                               (files can be found in $CP2K/cp2k/data)
         BASIS SET FILE NAME ./BASIS ADMM
         WFN RESTART FILE NAME ${project}-RESTART.wfn
         &SCF
                  SCF GUESS RESTART
         &END SCF
         &AUXILIARY DENSITY MATRIX METHOD
                  METHOD BASIS_PROJECTION
                  ADMM_PURIFICATION_METHOD MO_DIAG
         & END AUXILIARY DENSITY MATRIX METHOD
         . . .
         &XC
         . . .
         &END XC
&END DFT
&SUBSYS
         & KIND Si
                  BASIS SET DZVP-MOLOPT-SR-GTH
                  AUX FIT BASIS SET cFIT3
                  POTENTIAL GTH-PBE-q4
         &END KIND
&END SUBSYS
```

11

Which functional to use?

PBE0-TC-LRC

$$E_{xc}^{PBE0-TC-LRC} = aE_x^{HF,TC}(R_C) + aE_x^{PBE,LRC}(R_C)$$
$$+(1-a)E_x^{PBE} + E_c^{PBE}$$

J. Chem. Theory Comput., 5, 3010 (2009)

• HSE06

$$E_{xc}^{HSE06} = aE_x^{HF,SR}(\omega) + (1-a)E_x^{PBE,SR}(\omega) + E_x^{PBE,LR}(\omega) + E_c^{PBE}$$

J. Chem. Phys., 125, 224106 (2006)

Input Structure: PBE0 vs. HSE06

&XC **&XC FUNCTIONAL** &PBE SCALE_X 0.75 SCALE C 1.0 &END PBE &PBE HOLE T C LR CUTOFF RADIUS 2.0 SCALE X 0.25 &END PBE_HOLE_T_C_LR &END XC FUNCTIONAL &HF **&SCREENING** EPS SCHWARZ 1.0E-6 SCREEN ON INITIAL PFALSE **&END SCREENING** &INTERACTION POTENTIAL POTENTIAL TYPE TRUNCATED CUTOFF RADIUS 2.0 T_C_G_DATA ./t_c_g.dat **&END INTERACTION POTENTIAL** &MEMORY MAX MEMORY 2400 **EPS STORAGE_SCALING 0.1 &END MEMORY** FRACTION 0.25 &END HF &END XC PBE0-TC-LRC

&XC **&XC FUNCTIONAL** &PBE SCALE_X 0.0 SCALE C 1.0 **&END PBE** &XWPBE SCALE X -0.25 SCALE X0 1.0 OMEGA 0.11 &END XWPBE &END XC FUNCTIONAL &HF **&SCREENING** EPS SCHWARZ 1.0E-6 SCREEN ON INITIAL PFALSE **&END SCREENING** &INTERACTION POTENTIAL POTENTIAL TYPE SHORTRANGE OMEGA 0.11 &END INTERACTION_POTENTIAL &MEMORY MAX MEMORY 2400 EPS_STORAGE_SCALING 0.1 **&END MEMORY** FRACTION 0.25 &END HF &END XC HSE06

13 (t_c_g.dat can be found in \$CP2K/cp2k/data)

(see examples in \$CP2K/cp2k/tests/QS/regtest-admm-1/2/3/4)

Example: Diamond Band Gap

method	number of integrals	gap [eV]
PBE (PBS)		4.17
PBE (ABS)		4.37
PBE0 (PBS)	40 787 850 778 591	6.07
PBE0 (ABS)	23 561 509 497	6.25
PBE0 ADMM1	24 816 897 009	6.03
PBE0 ADMM2	24 795 460 638	6.02
PBE (PBS) PBE (ABS) PBE0 (PBS) PBE0 (ABS) PBE0 ADMM1 PBE0 ADMM2	40 787 850 778 591 23 561 509 497 24 816 897 009 24 795 460 638	4.17 4.37 6.07 6.25 6.03 6.02

3x3x3 supercell

Cutoff radius

 $R_C \leq \frac{L}{2}$

Example: Bulk Silicon

Cutoff radius (Å) Band gap (eV) Integrals

2	1.16 ^a	77799946176
4	1.54 ^a	154325979000
6	1.71 ^a	265868148312
8	1.78 ^a	422457823080

PBE0-TC-LRC with cFIT3 ADMM basis, 3x3x3 supercell, 216 atoms

ADMM basis	Band gap (eV)	Integrals
cFIT3	1.78 ^a	422457823080
FIT3	1.80 ^a	424426850352
pFIT3	1.98 ^a	1447428361680
Ref. (VASP)	1.93 ^b (indirect)	

Polarisation function is important for covalent solids!

PBE0-TC-LRC with 8 Å cutoff radius, 3x3x3 supercell, 216 atoms

^a Ling & Slater, unpublished; ^b J. Chem. Phys. 124, 154709 (2006)

Example: excess electrons in TiO₂

Spreafico & VandeVondele, PCCP, 16, 26144 (2014)

Example: Li doped ZSM-5

- Widely used nanoporous zeolite catalyst
- $Si_{1-x}O_2AI_x.Li_x$
- 289 atoms in the unit cell
- 95 Si (dark blue), 1 Al (green), Li (light blue)
- 12 symmetry distinct positions for the AI and 48 distinct positions for the Li cation
- 2 x 2 x 1.3nm cell
- TZV2P primary basis/ PBE
- Open question in zeolite science what determines where the AI is found in this material?
- Important, because AI is associated with acidity and catalytic activity

- Preference for two lattice sites at PBE and hybrid PBE0 level of theory
- 1 energy evaluation with full hybrid ~2 hours on 480 cores (ARCHER)
- ADMM (CFIT), full geometry optimisation in 6 hours on 480 cores (ARCHER) 1936 energy evaluations, 293 optimisation steps!

Slater and Ling, unpublished, 2015

Acknowledgements

Prof Michiel Sprik Dr Matt Watkins Dr Florian Schiffmann

Funding

Computing

Pioneering research and skills

UK HPC Materials Chemistry Consortium