CP2K-UK 4TH ANNUAL USER MEETING

Welcome & Project Update

Iain Bethune <u>i.bethune@epcc.ed.ac.uk</u> @ibethune @CP2Kproject

Introduction

- Welcome!
- 40+ attendees from 20+ institutions
- Experienced and novice users
 - Network, learn from others' experience
- Highlight opportunities for training & support
- Update on latest developments

Background: CP2K-UK

- CP2K is a powerful tool
 - DFT, Classical, Hybrid-DFT, TDDFT, LS-DFT, MP2/RPA/G0W0, QM/MM
 - MD, MC, Relaxation, NEB, Free Energy Tools
 - Suitable for simulations in range of EPSRC target areas
- CP2K is popular (and growing)
 - 2nd most heavily used code on ARCHER (£0.5m per year)
 - Growing users of CP2K on national service:
 - 42 (2Q14) -> 72 (1Q15) -> 116 (1Q16)) -> 132 (4Q17)
 - EPSRC: Materials Chemistry Consortium, UKCP
 - NERC: Mineral Physics
- CP2K can be hard to use
 - Large feature set leads to complexity
 - Few default settings -> hard to set up systems from scratch
 - Lack of documentation

Support for UK CP2K Users

CP2K-UK: EPSRC Software for the Future

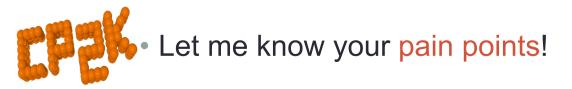
- £500,000, 2013-2018
- EPCC, UCL (+ Lincoln), KCL
 - + 7 supporting groups

Pioneering research and skills

- Aims
 - Grow and develop existing CP2K community in UK
 - Lower barriers to usage and development of CP2K
 - Long-term sustainability of CP2K
 - Extend ability of CP2K to tackle challenging systems

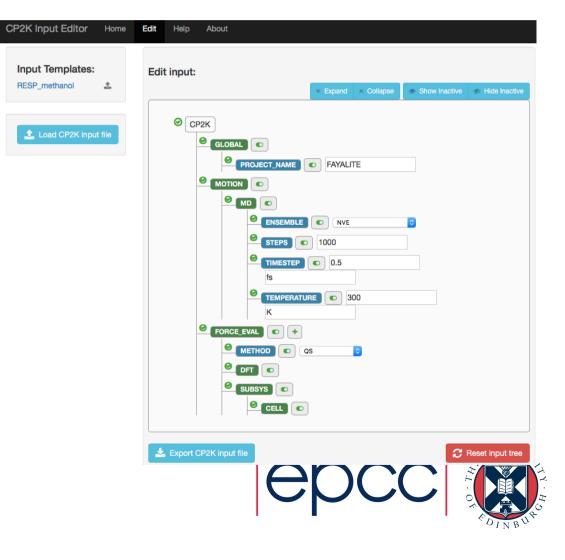
Support for Users

- Training Events
 - Annual User Group Meetings
 - 14 days CP2K training during 2016
 - Collaborations with ARCHER, PRACE, MCC, UKCP & STFC
 - Visits to research groups (QUB)
 - CP2K Summer School
 - 23rd 26th Aug 2016 @ King's College London
 - Majority from UK people
 - Slides and exercises still available:
 - www.cp2k.org/events:2016_summer_school:index
 - All CP2K events at <u>www.cp2k.org/news</u>
 - Archived info at <u>www.cp2k.org/docs#workshops</u>
 - Also notification by email



Support for Users

- Ad-hoc bespoke support
 - Help installing CP2K on your cluster
 - Iceberg @ Sheffield, Lancaster HEC, KCL Physics Cluster, QUB ...
 - Training days / group visits
 - Debugging
 - Adding functionality (e.g. OPLS torsions)
 - Merging in user contributions
 - Advice on parallel performance <u>www.cp2k.org/performance</u>
 - We would like more than just Cray machines!
- Documentation
 - Growing set of 'HowTo' guides: <u>https://www.cp2k.org/howto</u>
 - FAQs: <u>https://www.cp2k.org/faq</u>

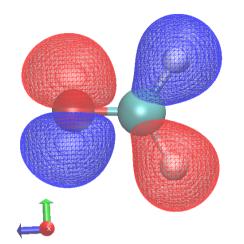


Support for Users

- Tools & Usability
 - Feedback from tutorials:
 - building an input is hard!
 - CP2K input GUI
 - Validation of input
 CP2K releases 2.5 4.0
 - Keyword Selection
 - Show/hide sections
 - Job templates
 - Tooltip keyword help
 - Import and edit existing input files
 - Currently working on Chimera / tetr integration
 - System set-up and visualisation

http://cp2k-www.epcc.ed.ac.uk/cp2k-input-editor

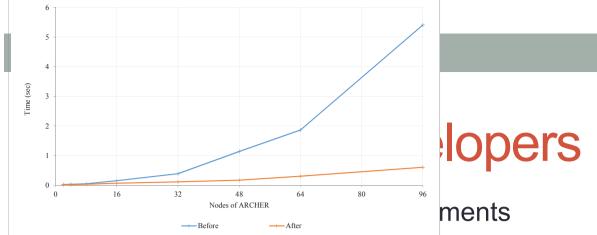
Support for Developers


- Development projects
 - 3 year PDRA developer post at KCL (2013-2016)
 - Trailblazer for future (externally funded) projects
 - Langevin Dynamics regions (Kantorovich, 2008, Phys Rev B)
 - BSSE calculations with arbitrary fragments
 - Filter Matrix Diagonalization (Rayson & Briddon, 2009, Phys Rev B)
 - REPEAT charge fitting (Campana et al, 2008, JCTC)
 - CP2K Installer
 - Vibrational Initialisation for MD (West & Estreicher, 2006, PRL)

Support for Developers

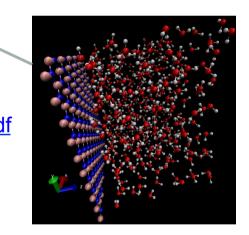
- External funding
 - Three 12 month funded projects from ARCHER eCSE

- LR-TDDFT with Hybrid Functionals/ADMM
 - Dec 2015 Dec 2016 : Sergey Chulkov / Matt Watkins @ Lincoln
 - Maximum Overlap Method
 - MO visualisation output in Molden format
 - See


https://www.archer.ac.uk/training/virtual/2016-11-23-CP2K-Improvements/ TDDFT.slides.html

- Electron Transport based on Non-Equilibrium Green's Functions Methods
 - Dec 2016-Dec 2017

Sergey / Matt @ Lincoln, Lev Kantorovich @ KCL, Artem Fediai @ TU
 Dresden



- Started Dec 2015 Mark Tucker @ EPCC
- Large, load imbalanced systems (~10% speedup, GBs memory saving)
- GAPW (3.6x speedup!)
- vDW-corrected XC functionals (~5% speedup)
- K-points
- See <u>https://www.archer.ac.uk/training/virtual/</u> 2016-11-23-CP2K-Improvements/CP2K-virtual-tutorial.pdf

Nodes of ARCHER	45	48	64	96
Original Code	1427	1176	1371	1278
Modified Algorithm	1312	1057	1241	1168
Improvement	8.8%	11.3%	10.5%	9.4%

Table 2: Overall Run Time (seconds).

- Charged cluster of 216 water molecules in 34Å³ box
- TZV2P MOLOPT basis set
- PBC off
- ~10% speedup

Community Involvement

- CP2K-UK project exists to support and grow the CP2K user community - how can you get involved?
 - Let us know what support you need
 - Via discussion session & feedback forms, or ad hoc
 - Provide support visits to individuals & groups
 - Contribute to the CP2K website / wiki
 - Join the CP2K discussion forum
 - http://groups.google.com/group/cp2k
 - Present at next year's user meeting

Community Involvement

- Interested in contributing to development?
 - Opportunity to get 6-12 months funding via ARCHER eCSE calls (next 31st Jan & 9th May 2017) for *"Improvements to code which allows new science* to be carried out"
 - Have a 'killer feature' that you *need* in CP2K?
 - Interested in working on a development project? Let me know...
- Acknowledge support from CP2K-UK grant (EP/K038583/1) in publications (and tell me!)
 - More impact = better chance of future funding
 - Cite CP2K reference papers (check your output!)
- Letters of support available to projects who will use/develop CP2K

Summary

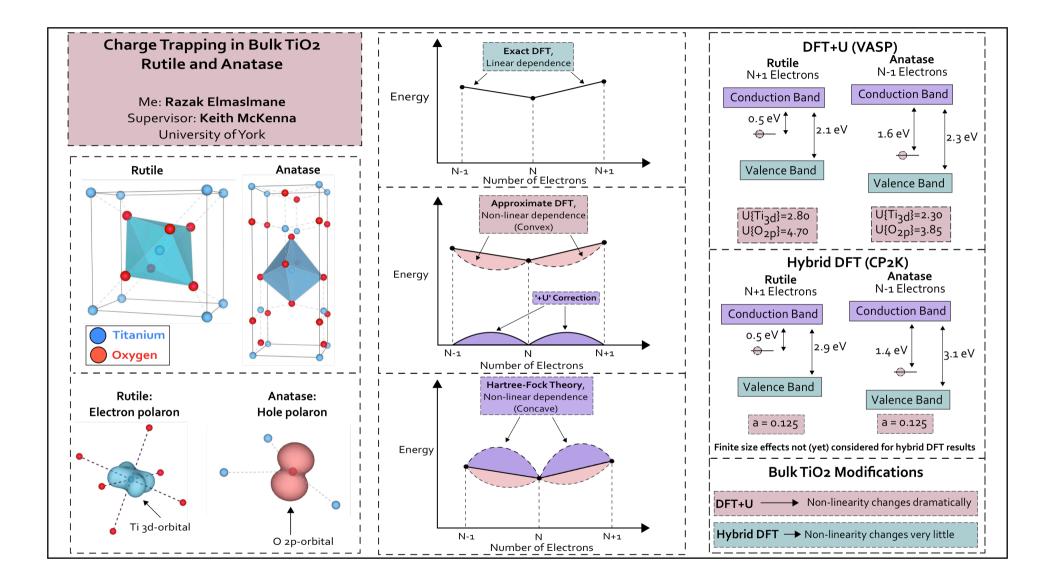
- CP2K-UK exists to support your research using CP2K!
- Aim to improve confidence and competence in the user community
- User engagement and feedback is key
- Opportunity to get bespoke support for new development projects within your group
 - Support requests to <u>i.bethune@epcc.ed.ac.uk</u>

Acknowledgements

• EPSRC (EP/K038583/1)

- Joost VandeVondele & Jürg Hutter
- Lev Kantorovich, Ben Slater & Matt Watkins
- Jochen Blumberger, Patricia Hunt, Jorge Kohanoff, Angelos Michaelides, Philip Moriarty, Carole Morrison, Alex Shluger & Michiel Sprik

Any questions?


Lightning talks

• 3 minute summaries of research using CP2K:

- Razak El-Maslmane, University of York
- Dibyajyoti Ghosh, University of Bath
- Nico Holmberg, Aalto University
- Zheng Jiang, University of Southampton
- Sanliang Ling, University College London
- Fiona Reid, EPCC
- Guido Falk von Rudorff, University College London

BOMD, CP2K and Me

θK

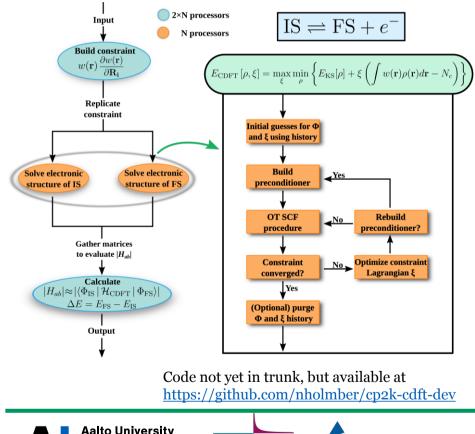
Trapping Gaseous Pollutants on Defective Graphene Sheet

Selective trapping

Increased trapping capacity

J. Mater. Chem. C, **2014**, 2, 392

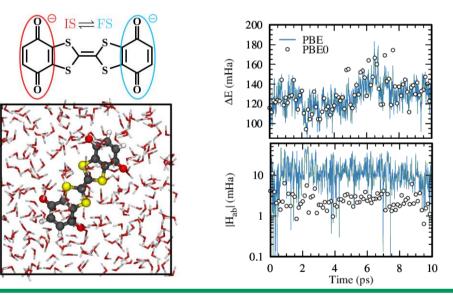
Dibyajyoti Ghosh

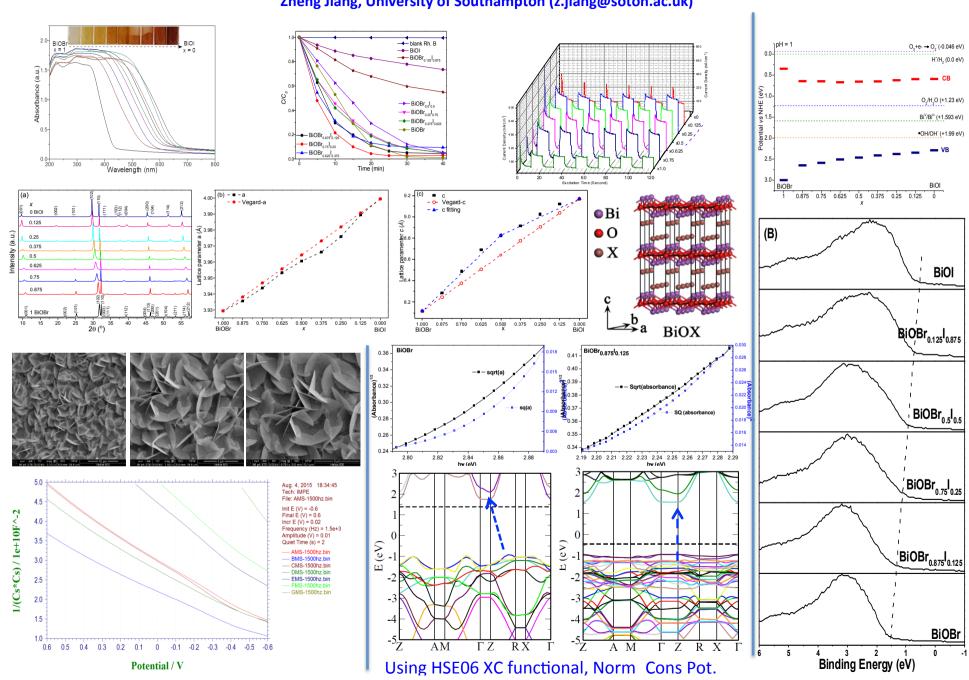

ys. Chem. C, 2013, 1

J. Phys. Che

118, 1

vs. 2

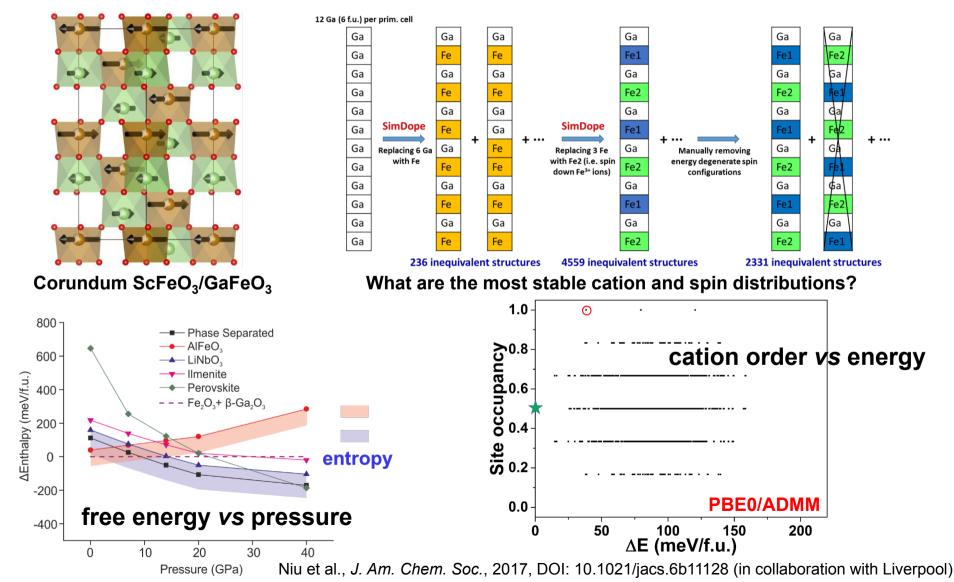

Line Defects at the Heterojunction of Hybrid Boron Nitride/Graphene Nanoribbons Efficient constrained DFT implementation for condensed phase electron transfer MD simulations¹ Nico Holmberg, Aalto University, nico.holmberg@aalto.fi

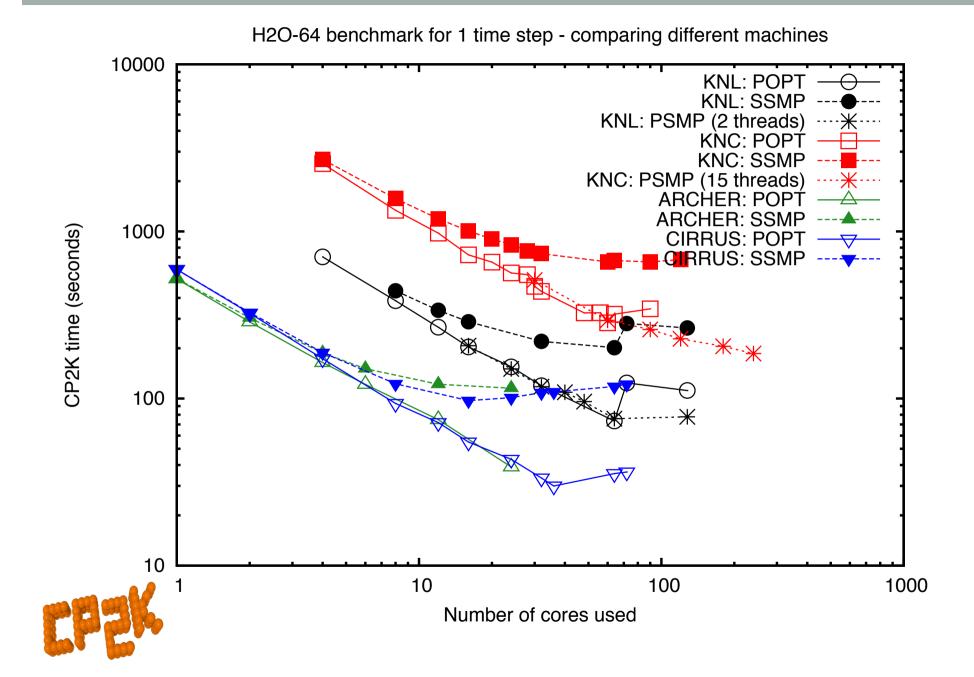


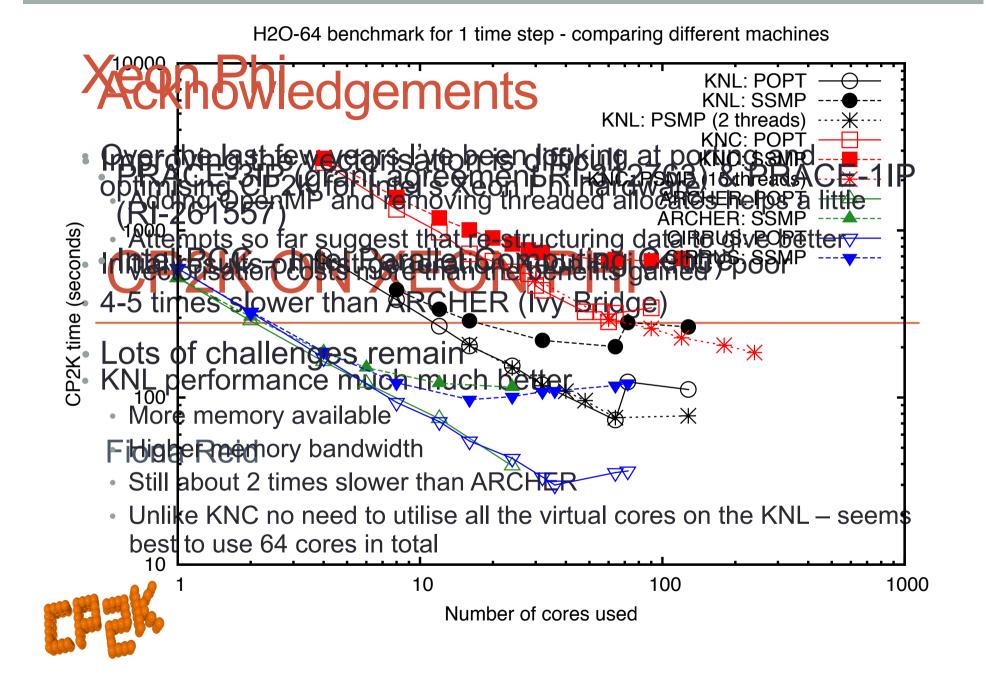
Electron transfer (ET) parameters directly from two-state MD simulations with explicit solvent

Example: Intramolecular ET in QTTFQ⁻ (258 water, 12 ps total, 0.5 fs step, 384 MPI cores)

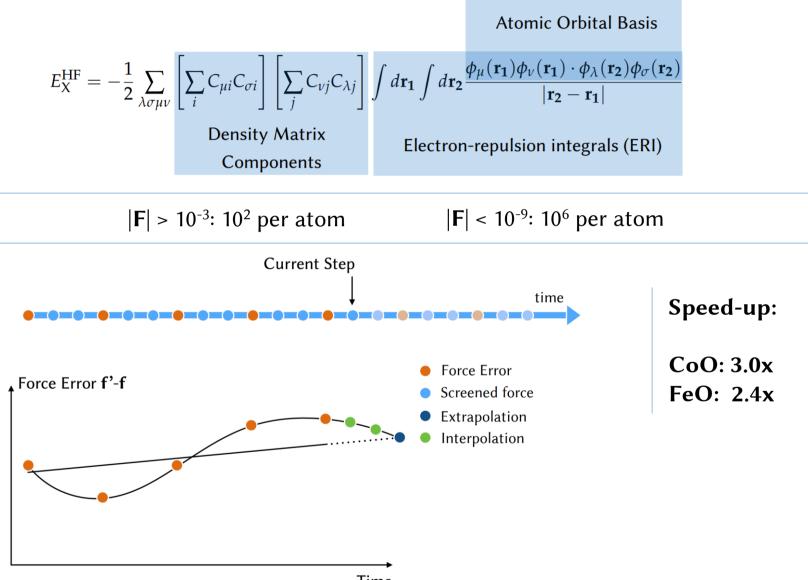
1. Holmberg, N.; Laasonen, K.; *J. Chem. Theory Comput.*, Just Accepted Manuscript, DOI: 10.1021/acs.jctc.6b01085


Origin of the Enhanced Photoelectrocatalytic performance of BiOBr_xI_{1-x}


Zheng Jiang, University of Southampton (z.jiang@soton.ac.uk)



Computational Study of Multiferroic Materials Using CP2K


Sanliang Ling, Ben Slater, Furio Cora (UCL Chemistry)

Faster HFX forces in MD runs

Discussion session

- Suggested topics:
 - CP2K Development projects (Jürg)
 - Getting started with CP2K / Usability (lain)
 - Hybrid Functional Calculations (Ben & Sanliang)
 - TDDFT (Matt & Sergey)
 - Others?
- What could the CP2K-UK project do in the next year that would give the most help to your research?

Summary

- Thank you very much for coming
- Thanks to all our our speakers
- Please complete feedback forms and return them before you leave
- See you again next year!

