CP2K: GPW and GAPW

Marcella Iannuzzi

Department of Chemistry, University of Zurich
http://www.cp2k.org

Basis set Representation

KS matrix formulation when the wavefunction is expanded into a basis

System size $\left\{\mathrm{Nel}_{\mathrm{el}}, \mathrm{M}\right\}, \mathrm{P}[\mathrm{M} \times \mathrm{M}], C[M \times N]$

$$
\begin{aligned}
& \psi_{i}(\mathbf{r})=\sum_{\alpha} C_{\alpha i} \phi_{\alpha}(\mathbf{r}) \\
& n(\mathbf{r})=\sum_{i} \sum_{\alpha \beta} f_{i} C_{\alpha i} C_{\beta i} \phi_{\alpha}(\mathbf{r}) \phi_{\beta}(\mathbf{r})=\sum_{\alpha \beta} P_{\alpha \beta} \phi_{\alpha}(\mathbf{r}) \phi_{\beta}(\mathbf{r}) \\
& \mathbf{P}=\mathbf{P S P}
\end{aligned}
$$

Variational principle Constrained minimisation problem

KS total energy

$$
E\left[\left\{\psi_{i}\right\}\right]=T\left[\left\{\psi_{i}\right\}\right]+E^{\mathrm{ext}}[n]+E^{\mathrm{H}}[n]+E^{\mathrm{XC}}[n]+E^{I I}
$$

Matrix formulation of the KS equations

$$
\mathbf{K}(C) \mathbf{C}=\mathbf{T}(C)+\mathbf{V}_{\text {ext }}(C)+\mathbf{E}^{\mathrm{H}}(C)+\mathbf{E}^{\mathrm{xc}}(C)=\mathbf{S C} \varepsilon
$$

Self－consistency

㤘 Generate a starting density $\Rightarrow n^{\text {init }}$
詸 Generate the KS potential $\Rightarrow V_{K s}{ }^{\text {init }}$
慗 Solve the KS equations $\Rightarrow \epsilon, \psi$
彩 Calculate the new density $\Rightarrow \boldsymbol{n}^{1}$
恶 New KS potential $\Rightarrow \mathrm{V}_{\text {Ks }}{ }^{1}$
档 New orbitals and energies $\Rightarrow \epsilon^{1}, \psi$
誈 New density $\Rightarrow n^{2}$

classes of Basis sets

繣 Extended basis sets，PW ：condensed matter
Localised basis sets centred at atomic positions，GTO

Idea of GPW：auxiliary basis set to represent the density

采 Mixed（GTO＋PW）to take best of two worlds，GPW
黄 Augmented basis set，GAPW：separated hard and soft density domains

GPW Ingredients

$$
\begin{aligned}
& \text { linear scaling KS matrix computation for GTO } \\
& \text { 潘 Gaussian basis sets (many terms analytic) } \\
& \psi_{i}(\mathbf{r})=\sum_{\alpha} C_{\alpha i} \phi_{\alpha}(\mathbf{r}) \quad \phi_{\alpha}(\mathbf{r})=\sum_{m} d_{m \alpha} g_{m}(\mathbf{r}) \quad g_{m}(\mathbf{r})=x^{m_{x}} y^{m_{y}} z^{m_{z}} e^{-\alpha_{m} r^{2}} \\
& \text { 潾 Pseudo potentials } \\
& \text { 菐 Plane waves auxiliary basis for Coulomb integrals } \\
& \text { 糕 Regular grids and FFT for the density } \\
& \text { 潾 Sparse matrices (KS and P) } \\
& \text { 恶 Efficient screening }
\end{aligned}
$$

Gaussian Basis set

漁 Localised, atom-position dependent GTO basis

$$
\varphi_{\mu}(\mathbf{r})=\sum_{m} d_{m \mu} g_{m}(\mathbf{r})
$$

眫 Expansion of the density using the density matrix

$$
n(\mathbf{r})=\sum_{\mu \nu} P_{\mu \nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}^{*}(\mathbf{r})
$$

Operator matrices are sparse

Analytic Integrals

Cartesian Gaussian

$$
\begin{gathered}
g(\mathbf{r}, \mathbf{n}, \eta, \mathbf{R})=\left(x-R_{x}\right)^{n_{x}}\left(y-R_{y}\right)^{n_{y}}\left(z-R_{z}\right)^{n_{z}} e^{-\eta(\mathbf{r}-\mathbf{R})^{2}} \\
l=n_{x}+n_{y}+n_{z} \quad(l+1)(l+2) / 2
\end{gathered}
$$

Differential relations

$$
\left.\left.\left.\left.\left.\left.\frac{\partial}{\partial R_{i}} \right\rvert\, \mathbf{n}\right)=2 \eta \mid \mathbf{n}+\mathbf{1}_{i}\right)-n_{i} \mid \mathbf{n}-\mathbf{1}_{i}\right) \left.\quad \frac{\partial}{\partial R_{i}} \right\rvert\, \mathbf{n}\right) \left.=-\frac{\partial}{\partial r_{i}} \right\rvert\, \mathbf{n}\right)
$$

Obara-Saika recursion relations

$\left(\mathbf{0}_{a}|\mathcal{O}(\mathbf{r})| \mathbf{0}_{b}\right)$
$\left(\mathbf{a}+\mathbf{1}_{i}|\mathcal{O}(\mathbf{r})| \mathbf{b}\right)$

Obara and Saika JCP 84 (1986), 3963

Basis Set library

GTH_BASIS_SETS : BASIS_MOLOPT : EMSL_BASIS_SETS

12211

GTO in CP2K

鲜 The repository contains several GTO libraries

```
cp2k/data/
ALL BASIS SETS
ALL_POTENTIALS
BASIS_ADMM
BASIS_ADMM_MOLOPT
BASIS_LRIGPW_AUXMOLOPT ECP_POTENTIALS
BASIS_MOLOPT
BASIS_MOLOPT_UCL
```

```
BASIS_RI_cc-TZ
```

BASIS_RI_cc-TZ
BASIS_SET
BASIS_SET
BASIS_ZIJLSTRA
BASIS_ZIJLSTRA
DFTB
DFTB

```
EMSL_BASIS_SETS
```

EMSL_BASIS_SETS
GTH_BASIS_SETS

```
GTH_BASIS_SETS
```

GTH_POTENTIALS
HFX_BASIS
HF_POTENTIALS
MM_POTENTIAL
NLCC_POTENTIALS
POTENTIAL
README

```
dftd3.dat
```

dftd3.dat
nm12_parameters.xml
nm12_parameters.xml
rVV10_kernel_table.dat
rVV10_kernel_table.dat
t_c_g.dat
t_c_g.dat
t_sh_p_s_c.dat
t_sh_p_s_c.dat
vdW_kernel_table.dat

```
vdW_kernel_table.dat
```

Tools for the optimisation of GTO basis sets are available in cp2k, based on atomic and molecular electronic structure calculations

Pseudopotentials

溇 Core electrons are eliminated $\mathrm{Z}_{\mathrm{v}}=\mathrm{Z}-\mathrm{Z}_{\text {core }}$喼 Atomic 1s： $\exp \{-Z r\}$
隠 Smooth nodeless pseudo－wfn close to nuclei
詸 Bare Coulomb replaced by screened Coulomb

撛 Inclusion of relativistic effects
淧Transferable
善 Angular dependent potentials：
Pt p peaked at $3.9 \AA$ s peaked at $2.4 \AA$ d peaked at $1.3 \AA$

GTH Pseudopotentials

隠 Norm－conserving，separable，dual－space
缕 Local PP：short－range and long－range terms

$$
V_{\mathrm{loc}}^{\mathrm{PP}}(r)=\sum_{i=1}^{4} C_{i}^{\mathrm{PP}} \underset{\text { analytically }}{\left(\sqrt{(2)} \alpha^{\mathrm{PP}} r\right)^{(2 i-2)}} e^{-\left(\alpha^{\mathrm{PP}} r\right)^{2}}-\frac{Z_{\text {ion }}}{r} \operatorname{erf}\left(\alpha^{\mathrm{PP}} r\right)
$$

密 Non－Local PP with Gaussian type projectors

$$
\begin{gathered}
V_{\mathrm{nl}}^{\mathrm{PP}}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{l m} \sum_{i j}\left\langle\mathbf{r} \mid p_{i}^{l m}\right\rangle h_{i j}^{l}\left\langle p_{j}^{l m} \mid \mathbf{r}^{\prime}\right\rangle \\
\left\langle\mathbf{r} \mid p_{i}^{l m}\right\rangle=N_{i}^{l} Y^{l m}(\hat{r}) r^{(l+2 i-2)} e^{-\frac{1}{2}\left(\frac{r}{r_{l}}\right)^{2}}
\end{gathered}
$$

Accupate and Transferable

Scalar relativistic

Few parameters
Goedeker，Teter，Hutter，PRB 54 （1996），1703；
Hartwigsen，Goedeker，Hutter，PRB 58 （1998） 3641

Electrostate Emergy

Periodic system

$$
E_{\mathrm{ES}}=\int V_{\mathrm{loc}}^{\mathrm{PP}}(\mathbf{r}) n(\mathbf{r}) d \mathbf{r}+2 \pi \Omega \sum_{\mathbf{G}} \frac{\tilde{n}^{*}(\mathbf{G}) \tilde{n}(\mathbf{G})}{G^{2}}+\frac{1}{2} \sum_{A \neq B} \frac{Z_{A} Z_{B}}{\left|\mathbf{R}_{A}-\mathbf{R}_{B}\right|}
$$

total charge distribution including $n(r)$ and Z

$$
n_{\mathrm{tot}}(\mathbf{r})=n(\mathbf{r})+\sum_{A} n_{A}(\mathbf{r})
$$

$$
n_{A}(\mathbf{r})=-\frac{Z_{A}}{\left(r_{A}^{c}\right)^{3}} \pi^{-3 / 2} e^{\left(\frac{\mathbf{r}-\mathbf{R}_{A}}{r_{A}^{c}}\right)} \quad V_{\text {core }}^{A}(\mathbf{r})=-\frac{Z_{A}}{\left|\mathbf{r}-\mathbf{R}_{A}\right|} \operatorname{erf}\left(\frac{\left|\mathbf{r}-\mathbf{R}_{A}\right|}{r_{A}^{c}}\right)
$$

$$
r_{A}^{c}=\sqrt{2} r_{\operatorname{loc} A}^{\mathrm{PP}}
$$

cancels the long range term of local PP

$$
\begin{aligned}
E_{\mathrm{ES}}= & \int V_{\mathrm{loc}}^{\mathrm{SR}}(\mathbf{r}) n(\mathbf{r})+\frac{1}{2} \iint \frac{n_{\mathrm{tot}}(\mathbf{r}) n_{\mathrm{tot}}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime} \quad \begin{array}{c}
\mathrm{E}^{\mathrm{H}}\left[n_{\mathrm{tot}}\right] \text { long range } \\
\text { smooth }
\end{array} \\
+ & \frac{1}{2} \sum_{A \neq B} \frac{Z_{A} Z_{B}}{\left|\mathbf{R}_{A}-\mathbf{R}_{B}\right|} \operatorname{erfc}\left[\frac{\mid \mathbf{R}_{A}-\mathbf{R}_{B}}{\sqrt{\left(r_{A}^{c}\right)^{2}+\left(r_{B}^{c}\right)^{2}}}\right]-\sum_{A} \frac{1}{\sqrt{2 \pi}} \frac{Z_{A}^{2}}{r_{A}^{c}} \\
& \mathrm{E}^{\mathrm{ov}} \text { short range, pair } \quad \mathrm{E}^{\text {self }}
\end{aligned}
$$

Auxiliary Basis set

业 Long range term : Non-local Hartree potential

$$
E^{\mathrm{H}}\left[n_{\mathrm{tot}}\right]=\frac{1}{2} \iint \frac{n_{\mathrm{tot}}(\mathbf{r}) n_{\mathrm{tot}}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d \mathbf{r} d \mathbf{r}^{\prime}
$$

帚 Orthogonal, unbiased, naturally periodic PW basis

$$
\tilde{n}(\mathbf{r})=\frac{1}{\Omega} \sum_{\mathbf{G}} \tilde{n}(\mathbf{G}) e^{i \mathbf{G} \cdot \mathbf{r}}
$$

Real Space Integration

Finite cutoff and simulation box define a real space grid
洷㥐 Density collocation

$$
\begin{aligned}
& n(\mathbf{r})=\sum_{\mu \nu} P_{\mu \nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r}) \rightarrow \sum_{\mu \nu} P_{\mu \nu} \bar{\varphi}_{\mu \nu}(\mathbf{R})=n(\mathbf{R}) \\
& \hat{n}(\mathbf{G}) \rightarrow V_{H}(\mathbf{G})=\frac{\hat{n}(\mathbf{G})}{G^{2}} \rightarrow V_{H}(\mathbf{R}) \\
& \text { Real Space } \\
& \text { G-Space }
\end{aligned}
$$

菐 Numerical approximation of the gradient $n(\mathbf{R}) \rightarrow \nabla n(\mathbf{R})$

爵 $\epsilon_{X C}$ and derivatives evaluated on the grid $\quad v_{X C}[n](\mathbf{r}) \rightarrow V_{X C}(\mathbf{R})=\frac{\partial \epsilon_{x c}}{\partial n}(\mathbf{R})$㯖 Real space integration $\quad H_{H X C}^{\mu \nu}=\langle\mu| V_{H X C}(\mathbf{r})|\nu\rangle \rightarrow \sum_{R} V_{H X C}(R) \varphi_{\mu \nu}^{\prime}(R)$

Multiple Grids

$$
E_{\mathrm{cut}}^{i}=\frac{E_{\mathrm{cut}}^{1}}{\alpha^{(i-1)}}, \quad i=1 . . N
$$

Analysis of Multigrid

Bulk Si, 8 atoms, $a=5.43 \AA \AA_{\text {, }} E_{\text {cut }}=100$ Ry, $E_{\text {rel }}=60$ Ry

----		MULTIGRID INFO		
count for grid	1	2720	cutoff [a.u.]	50.00
count for grid	2 :	5000	cutoff [a.u.]	16.67
count for grid	3 :	2760	cutoff [a.u.]	5.56
count for grid	4:	16	cutoff [a.u.]	1.85
total gridlevel count		10496		

Changing E cut from 50 to 500 Ry

```
# REL_CUTOFF = 60
# Cutoff (Ry) | Total Energy (Ha) | NG on grid 1 | NG on grid 2 | NG on grid 3 | NG on grid 4
\begin{tabular}{rrrrrr}
50.00 & -32.3795329864 & 5048 & 5432 & 16 & 0 \\
100.00 & -32.3804557631 & 2720 & 5000 & 2760 & 16 \\
150.00 & -32.3804554850 & 2032 & 3016 & 5432 & 16 \\
200.00 & -32.3804554982 & 1880 & 2472 & 3384 & 2760 \\
250.00 & -32.3804554859 & 264 & 4088 & 3384 & 2760 \\
300.00 & -32.3804554843 & 264 & 2456 & 5000 & 2776 \\
350.00 & -32.3804554846 & 56 & 1976 & 5688 & 2776 \\
400.00 & -32.3804554851 & 56 & 1976 & 3016 & 5448 \\
450.00 & -32.3804554851 & 0 & 2032 & 3016 & 5448 \\
500.00 & -32.3804554850 & 0 & 2032 & 3016 & 5448
\end{tabular}
```


GPW Functional

$$
\begin{aligned}
E^{\mathrm{el}}[n] & =\sum_{\mu \nu} P_{\mu \nu}\left\langle\varphi_{\mu}\right|-\frac{1}{2} \nabla^{2}+V_{\mathrm{loc}}^{\mathrm{SR}}+V_{\mathrm{nl}}\left|\varphi_{\nu}\right\rangle \\
& +2 \pi \Omega \sum_{\mathbf{G}} \frac{\tilde{n}_{\text {tot }}^{*}(\mathbf{G}) \tilde{n}_{\text {tot }}(\mathbf{G})}{\mathbf{G}^{2}}+\sum_{\mathbf{R}} \tilde{n}(\mathbf{R}) V^{\mathrm{XC}}(\mathbf{R}) \\
& =\sum_{\mu \nu} P_{\mu \nu}\left(\left\langle\varphi_{\mu}\right|-\frac{1}{2} \nabla^{2}+V^{\mathrm{ext}}\left|\varphi_{\nu}\right\rangle+\sum_{\mathbf{R}} V_{\mu \nu}^{\mathrm{HXC}}(\mathbf{R}) \varphi_{\mu \nu}^{\prime}(\mathbf{R})\right)
\end{aligned}
$$

Linear scaling KS matrix construction

CPZK DFT input

```
&FORCE_EVAL
    METHOD Quickstep
    &DFT
        BASIS_SET_FILE_NAME GTH_BASIS_SETS
        POTENTIAL_FILE_NAME GTH_POTENTIALS
        LSD F
        MULTIPLICITY 1
        CHARGE 0
        &MGRID
            CUTOFF 300
            REL_CUTOFF 50
    &END MGRID
    &QS
        EPS_DEFAULT 1.0E-10
        &END QS
        &SCF
            MAX_SCF 50
            EPS_SCF 2.00E-06
            SCF_GUESS ATOMIC
    &END SCF
        &XC
            &XC_FUNCTIONAL
            &PBE
            &END PBE
        &END XC_FUNCTIONAL
```

```
                    &XC_GRID
        XC_DERIV SPLINE2_smooth
        XC_SMOOTH_RHO NN10
            &END XC_GRID
        &END XC
        &END DFT
    &SUBSYS
    &CELL
            PERIODIC XYZ
            ABC 8. 8. 8.
        &END CELL
        &COORD
        0 0.000000 0.000000 -0.065587
        H 0.000000 -0.757136 0.520545
        H 0.000000 0.757136 0.520545
        &END COORD
        &KIND H
            BASIS_SET DZVP-GTH-PBE
            POTENTIAL GTH-PBE-q1
        &END KIND
        &KIND O
            BASIS_SET DZVP-GTH-PBE
            POTENTIAL GTH-PBE-q6
        &END KIND
    &END SUBSYS
&END FORCE_EVAL
```


Hard and Sof Densities

Formaldehyde

詸 Pseudopotential \Rightarrow frozen core
溇 Augmented PW \Rightarrow separate regions（matching at edges） LAPW，LMTO（OK Andersen，PRB 12， 3060 （1975）

隠 Dual representation \Rightarrow localized orbitals and PW PAW（PE Bloechl，PRB，50， 17953 （1994））

Partitioning of the Density

Gaussian Augmented Plane Waves

Local Densíties

$$
n_{A}(\mathbf{r})=\sum_{\mu \nu} P_{\mu \nu} \chi_{\mu}^{A} \chi_{\nu}^{A}
$$

X_{μ} projection of φ_{μ} in Ω_{A}
through atom-dependent d^{\prime}

$$
\chi_{\mu}=\sum_{\alpha} d_{\mu \alpha}^{\prime A} g_{\alpha}(\mathbf{r})
$$

projector basis (same size)

$$
\begin{gathered}
\left\{p_{\alpha}\right\} \quad \lambda_{\alpha}=k^{\alpha} \lambda_{\min } \quad\left\langle p_{\alpha} \mid \varphi_{\mu}\right\rangle=\sum_{\beta} d_{\mu \beta}^{\prime A}\left\langle p_{\alpha} \mid g_{\beta}\right\rangle \\
n_{A}(\mathbf{r})=\sum_{\alpha \beta}\left[\sum_{\mu \nu} P_{\mu \nu} d_{\mu \alpha}^{\prime A} d_{\nu \beta}^{\prime A}\right] g_{\alpha}(\mathbf{r}) g_{\beta}(\mathbf{r})=\sum_{\alpha \beta} P_{\alpha \beta}^{\prime A} g_{\alpha}(\mathbf{r}) g_{\beta}(\mathbf{r})
\end{gathered}
$$

Density Dependent Terms: XC

Semi-local functional like local density approximation, generalised gradient approximation or meta-functionals

Gradient: $\quad \nabla n(\mathbf{r})=\nabla \tilde{n}(\mathbf{r})+\sum_{A} \nabla n_{A}(\mathbf{r})-\sum_{A} \nabla \tilde{n}_{A}(\mathbf{r})$
$E[n]=\int V_{l o c}(\mathbf{r}) n(\mathbf{r})=\int\left\{\tilde{V}_{l o c}(\mathbf{r})+\sum_{A} V_{l o c}^{A}(\mathbf{r})+\sum_{A} \tilde{V}_{l o c}^{A}(\mathbf{r})\right\}$

$\times\left\{\tilde{n}(\mathbf{r})+\sum_{A} n_{A}(\mathbf{r})-\sum_{A} \tilde{n}_{A}(\mathbf{r})\right\} d \mathbf{r}$

$$
=\int\left\{\tilde{V}_{l o c}(\mathbf{r}) \tilde{n}(\mathbf{r})+\sum_{A} V_{l o c}^{A}(\mathbf{r}) n_{A}(\mathbf{r})-\sum_{A} \tilde{V}_{l o c}^{A}(\mathbf{r}) \tilde{n}_{A}(\mathbf{r})\right\}
$$

Density Dependent Terms: ES

Non local Coulomb operator

Same multipole expansion as the local densities

$$
\mathcal{Q}_{A}^{L}=\int\left\{n_{A}(\mathbf{r})-\tilde{n}_{A}(\mathbf{r})+n_{A}^{Z}(\mathbf{r})\right\} r^{l} \mathcal{Y}_{l m}(\theta \phi) r^{2} d r \sin (\theta) d \theta d \phi
$$

$$
V\left[\tilde{n}+\mathrm{n}^{0}\right]+\sum_{A} V\left[n_{A} \nleftarrow n_{A}^{Z}\right]-\sum_{A} V\left[\tilde{n}_{A} \not \mathbf{n}_{A}^{0}\right]
$$

Interstitial region Atomic region

GAPW Functionals

$$
E_{x c}[n]=E_{x c}[\tilde{n}]+\sum_{A} E_{x c}\left[n_{A}\right]-\sum_{A} E_{x c}\left[\tilde{n}_{A}\right]
$$

$$
E_{H}\left[n+n^{Z}\right]=E_{H}\left[\tilde{n}+\mathrm{n}^{0}\right]+
$$

on global grids

via collocation + FFT

Analytic integrals
Local Spherical Grids

Iannuzzi, Chassaing, Hutter, Chimia (2005);
VandeVondele, Iannuzzi, Hutter, CSCM2005 proceedings

GAPW Input

```
&DFT
&QS
    EXTRAPOLATION ASPC
    EXTRAPOLATION_ORDER 4
        EPS_DEFAULT 1.0E-12
        METHOD GAPW
        EPS_DEFAULT 1.0E-12
        QUADRATURE GC_LOG
        EPSFIT 1.E-4
        EPSIS0 1.0E-12
        EPSRH00 1.E-8
        LMAXN0 4
        LMAXN1 6
        ALPHA0_H 10
&END QS
```


\&SUBSYS

."
\&KIND 0
BASIS_SET DZVP-MOLOPT-GTH-q6
POTENTIAL GTH-BLYP-q6
LEBEDEV_GRID 80
RADIAL_GRID 200
\&END KIND
\&KIND 01
ELEMENT 0
\#
BASIS_SET 6-311++G2d2p
BASIS_SET 6-311G**
POTENTIAL ALL
LEBEDEV_GRID 80
RADIAL_GRID 200
\&END KIND
\&END SUBSYS

Energy Functional Minimisation

$$
C^{*}=\arg \min _{C}\left\{E(C): C^{T} S C=1\right\}
$$

漛 Standard：Diagonalisation＋mixing（DIIS，Pulay，J．Comput．Chem．3， 556，（1982）；iterative diag．Kresse G．et al，PRB，54（16），11169，（1996））

Direct optimisation：Orbital rotations（maximally localised Wannier functions）

兼㐘 Linear scaling methods：Efficiency depends on sparsity of P（ s ． Goedecker，Rev．Mod．Phys．71，1085，（1999））

$$
\begin{gathered}
\mathbf{P}\left(\mathbf{r}, \mathbf{r}^{\prime}\right) \propto e^{-c \sqrt{E_{\text {gap }}}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \\
\left.\mathbf{P}_{\mu \nu}=\sum_{p q} \mathbf{S}_{\mu p}^{-1} \mathbf{S}_{q \nu}^{-1} \iint \varphi_{p}(\mathbf{r}) \mathbf{P}(\mathbf{r}, \mathbf{r})\right) \varphi_{q}\left(\mathbf{r}^{\prime}\right) \mathrm{d} \mathbf{r} \mathrm{~d} \mathbf{r}^{\prime}
\end{gathered}
$$

Traditional Diagonalisation

Eigensolver from standard parallel program library: SCALAPACK

$$
\mathbf{K C}=\mathbf{S C} \varepsilon
$$

Transformation into a standard eigenvalues problem
Cholesky decomposition $\quad \mathbf{S}=U^{T} U \quad \mathbf{C}^{\prime}=U \mathbf{C}$

$$
\mathbf{K C}=U^{T} U \mathbf{C} \varepsilon \quad \Rightarrow \quad\left[\left(U^{T}\right)^{-1} \mathbf{K} U^{-1}\right] \mathbf{C}^{\prime}=\mathbf{C}^{\prime} \varepsilon
$$

Diagonalisation of \mathbf{K}^{\prime} and back transformation of MO coefficients (occupied only (20\%))

DIIS for SCF convergence acceleration: few iterations

$$
\begin{gathered}
\text { error matrix } \\
\mathbf{e}=\mathbf{K P S}-\mathbf{S P K}
\end{gathered}
$$

scaling $\left(O\left(M^{3}\right)\right)$ and stability problems

Orbital Transformation Method

Auxiliary X, linearly constrained variables to parametrise the occupied subspace
not linear orthonormality constraint
$\mathbf{C}^{T} \mathbf{S C}=\mathbf{I}$

Linear constraint $\mathrm{XSC}_{0}=0$

Direction of
steepest decent
on E surface
tangent to
manifold at n

manifold for $\mathbf{C}^{\top} \mathbf{S C}=\mathbb{1}$
M dimensional

$$
\begin{gathered}
\mathbf{C}(\mathbf{X})=\mathbf{C}_{0} \cos (\mathbf{U})+\mathbf{X} \mathbf{U}^{-1} \sin (\mathbf{U}) \\
\mathbf{U}=\left(\mathbf{X}^{T} \mathbf{S} \mathbf{X}\right)^{1 / 2}
\end{gathered}
$$

matrix functionals by Taylor expansions in $X^{\top} S X$

M-1 dimensional

Preconditioned OT

$$
\begin{aligned}
& \begin{array}{l}
\text { minimisation in the auxiliary tangent space, } \\
\text { idempotency verified }
\end{array} \\
& \frac{\partial E(\mathbf{C}(\mathbf{X}))+\operatorname{Tr}\left(\mathbf{X}^{\dagger} \mathbf{S C}_{0} \Lambda\right)}{\partial \mathbf{X}}=\frac{\partial E}{\partial C} \frac{\partial \mathbf{C}}{\partial \mathbf{X}}+\mathbf{S C}_{0} \Lambda
\end{aligned}
$$

CG（LS）or DIIS

Preconditioned gradients

$$
\begin{gathered}
\mathbf{P}(\mathbf{H}-\mathbf{S} \epsilon) \mathbf{X}-\mathbf{X} \approx 0 \quad \mathbf{X} \rightarrow \sqrt{\mathbf{P}} \mathbf{X} \\
\mathbf{X}_{n+1}=\mathbf{X}_{n}-\mathbf{P}_{n} \boldsymbol{\nabla} E_{n}
\end{gathered}
$$

ideal preconditioner

$$
\mathbf{P}_{n}=\left(\mathbf{H}-\mathbf{S} \varepsilon_{n}\right)^{-1}
$$

$$
\varepsilon_{n}=\mathbf{C}_{n}^{T} \mathbf{H} \mathbf{C}_{n}
$$

棌 Full All
检 Full Kinet
棌Full Sing

$$
\begin{aligned}
& \text { 业 Full Single Inverse } \\
& \text { 业 Full S Inverse }
\end{aligned}
$$

OT Performance

> 潾 Use Inner and Outer loop
> 菐 Guaranteed convergence with CG + line search
> 粎 Various choices of preconditioners
> 菐 Limited number of SCF iterations
> 潾 KS diagonalisation avoided
> 潘 Sparsity of S and H can be exploited
> 㴆 Based on matrix-matrix and matrix-vector products
> 潾 Scaling $O\left(N^{2} M\right)$ in cpu and $O(N M)$ in memory
> 菐 Optimal for large system, high quality basis set

OT Performance

Refined preconditioner, most effective during MD of large systems with well conditioned basis sets

Schiffmann, VandeVondele, JCP 142244117 (2015)

OT input

```
&SCF
    EPS_SCF 1.01E-07
    &OUTER_SCF
        MAX_SCF 20
        EPS_SCF 1.01E-07
    &END OUTER_SCF
    SCF_GUESS RESTART
    MAX_SCF 20
    &OT
        MINIMIZER DIIS
        PRECONDITIONER FULL_ALL
    &END OT
&END SCF
```


Linear Scaling SCF

㴆 Based on sparse matrix matrix multiplications（iterative proc．）

$$
P=\frac{1}{2}\left(I-\operatorname{sign}\left(S^{-1} H-\mu I\right)\right) S^{-1}
$$

潾 Self consistent solution by mixing

$$
\begin{gathered}
H_{n+1}\left(P_{n+1}\right) \\
\hat{H}_{n+1}=(1-\alpha) \hat{H}_{n}-\alpha H_{n+1}
\end{gathered}
$$

兴 Chemical potential by bisecting until

$$
\mu_{n+1}: \quad\left|\operatorname{trace}\left(P_{n+1} S\right)-N_{e l}\right|<1 / 2
$$

Largest $\mathrm{O}\left(\mathrm{N}^{3}\right)$ calculation with CP2K （～6000 atoms）

Sparse Matrix Library

DBCSR：Distributed Blocked Compressed Sparse Row

潾 For massively parallel architectures
㴆 Optimised for 10000s of non－zeros per row（dense limit）
潾 Stored in block form ：atoms or molecules
垱 Cannons algorithm：2D layout（rows／columns）and 2D distribution of data
溇 Homogenised for load balance

given processor communicates only with nearest neighbours transferred data decreases as number of processors increases

Millions of atoms

Bulk liquid water. Dashed lines represent ideal linear scaling.

Metallic Electronio Structure

$$
E_{\mathrm{band}}=\sum_{n} \frac{1}{\Omega_{\mathrm{BZ}}} \int_{\mathrm{BZ}} \varepsilon_{n \mathbf{k}} \Theta\left(\varepsilon_{n \mathbf{k}}-E_{f}\right) d^{3} \mathbf{k} \rightarrow \sum_{n} \sum_{k} w_{\mathbf{k}} \varepsilon_{n \mathbf{k}} \Theta\left(\varepsilon_{n \mathbf{k}}-E_{f}\right) d^{3} \mathbf{k}
$$

charge sloshing and exceedingly slow convergence
㴆 Wavefunction must be orthogonal to unoccupied bands close in energy
稳 Discontinuous occupancies generate instability（large variations in $n(r)$ ）
漁 Integration over k－points and iterative diagonalisation schemes

smearing sิ Mixing in G-space

Mermin functional: minimise the free energy

$$
F(T)=E-\sum_{n} k_{B} T S\left(f_{n}\right) \quad S\left(f_{n}\right)=-\left[f_{n} \ln f_{n}+\left(1-f_{n}\right) \ln \left(1-f_{n}\right)\right]
$$

Any smooth operator that allows accurate $S\left(f_{n}\right)$ to recover the $T=0$ result

$$
f_{n}\left(\frac{\varepsilon_{n}-E_{f}}{k T}\right)=\frac{1}{\exp \left(\frac{\varepsilon_{n}-E_{f}}{k_{\mathrm{B}} T}\right)+1} \quad \text { Fermi-Dirac }
$$

Trial density mixed with previous densities: damping oscillations

$$
n_{m+1}^{\mathrm{inp}}=n_{m}^{\mathrm{inp}}+\mathbf{G}^{I} \mathcal{R}\left[n_{m}^{\mathrm{inp}}\right]+\sum_{i=1}^{m-1} \alpha_{i}\left(\Delta n_{i}+\mathbf{G}^{I} \Delta \mathcal{R}_{i}\right)
$$

residual

$$
\mathcal{R}\left[n^{\text {inp }}\right]=n^{\text {out }}\left[n^{\text {inp }}\right]-n^{\text {inp }}
$$

minimise the residual
G preconditioning matrix damping low G

Iterative improvement of the the $n(r)$

Input density matrix

$$
\mathbf{P}_{\alpha \beta}^{\mathrm{in}} \rightarrow n^{\mathrm{in}}(\mathbf{r})
$$

Rhodium: Bulk and Surface

Bulk: $4 \times 4 \times 4$
Surface: 6x6 7 layers

Basis	PP	$\mathrm{a}_{0}[\AA \AA]$	$\mathrm{B}[\mathrm{GPa}]$	$\mathrm{E}_{s}\left[\mathrm{eV} / \AA^{2}\right]$	$\mathrm{W}_{f}[\mathrm{eV}]$
3s2p2df	17 e	3.80	258.3	0.186	5.11
2s2p2df	9 e	3.83	242.6	0.172	5.14
2sp2d	9 e	3.85	230.2	0.167	5.20
spd	9 e	3.87	224.4	0.164	5.15

SCaLAPACK for diagonlisation

1003 atoms 3410 MOS 27069 BSf

Polyalanine peptide

f

pdsyevd (ESSL) on IBM BGP

nprocs	syevd	syevr	Cholesky
32	$106(49 \%)$	$72(40 \%)$	$38(21 \%)$
64	$69(46 \%)$	$48(37 \%)$	$34(26 \%)$
128	$41(41 \%)$	$29(34 \%)$	$23(28 \%)$
256	$35(41 \%)$	$26(34 \%)$	$24(32 \%)$
Syevd: D\&C			
Syevr: MRRR			

time \times SCF , on CRAY XE6
>70\% in eigenvalue solver
poor scaling

ELPA (http://elpa.rzg.mpg.de)

Improved efficiency by a two-step transformation and back transformation

Large metallic systems

hBN/Rh(111) Nanomesh 13×13 hBN on 12×12 Rh slab

2116 Ru atoms (8 valence el.) + 1250 C atoms, Nel=21928, $\mathrm{Nao}=47990$;
~ 25 days per structure optimisation, on 1024 cpus

Slab $12 \times 12 \operatorname{Rh}(111)$ slab, $a_{0}=3.801 \AA$, 1 layer hBN 13×13
4L: 576Rh + 169BN: Nao=19370; Nel=11144
7L: 1008Rh + 338BN: Nao=34996; Nel=19840

Structure opt. > 300 iterations => 1 $\div 2$ week on 512 cores

SCF for Metals

```
&SCF
    SCF_GUESS ATOMIC
    MAX_SCF 50
    EPS_SCF 1.0e-7
    EPS_DIIS 1.0e-7
    &SMEAR
        METHOD FERMI_DIRAC
        ELECTRONIC_TEMPERATURE 500.
    &END SMEAR
    &MIXING
            METHOD BROYDEN_MIXING
            ALPHA 0.6
            BETA 1.0
            NBROYDEN 15
    &END MIXING
    ADDED_MOS 20 20
&END SCF
```

```
&XC
    &XC_FUNCTIONAL PBE
        &END
    &vdW_POTENTIAL
        DISPERSION_FUNCTIONAL PAIR_POTENTIAL
        &PAIR_POTENTIAL
            TYPE DFTD3
            PARAMETER_FILE_NAME dftd3.dat
            REFERENCE_FUNCTIONAL PBE
        &END PAIR_POTENTIAL
        &END vdW_POTENTIAL
&END XC
```

