Zurich, July 12th 2017

CP2K:

GPW and GAPW

Marcella Iannuzzi

Department of Chemistry, University of Zurich

http://www.cp2k.org

Basis Set Representation

KS matrix formulation when the wavefunction is expanded into a basis

System size { N_{el} , M}, P [M×M], C [M×N]

 $\psi_{i}(\mathbf{r}) = \sum_{\alpha} C_{\alpha i} \phi_{\alpha}(\mathbf{r})$ $n(\mathbf{r}) = \sum_{i} \sum_{\alpha \beta} f_{i} C_{\alpha i} C_{\beta i} \phi_{\alpha}(\mathbf{r}) \phi_{\beta}(\mathbf{r}) = \sum_{\alpha \beta} P_{\alpha \beta} \phi_{\alpha}(\mathbf{r}) \phi_{\beta}(\mathbf{r})$

Variational principle Constrained minimisation problem

 $\mathbf{P} = \mathbf{P}\mathbf{S}\mathbf{P}$

KS total energy

 $E[\{\psi_i\}] = T[\{\psi_i\}] + E^{\text{ext}}[n] + E^{\text{H}}[n] + E^{\text{XC}}[n] + E^{II}$

Matrix formulation of the KS equations

 $\mathbf{K}(C)\mathbf{C} = \mathbf{T}(C) + \mathbf{V}_{\text{ext}}(C) + \mathbf{E}^{\text{H}}(C) + \mathbf{E}^{\text{xc}}(C) = \mathbf{S}\mathbf{C}\varepsilon$

Self-consistency

until self-consistency to required precision

classes of Basis Sets

Extended basis sets, PW : condensed matter

Localised basis sets centred at atomic positions, GTO

Idea of GPW: auxiliary basis set to represent the density

Mixed (GTO+PW) to take best of two worlds, GPW

Magmented basis set, GAPW: separated hard and soft density domains

linear scaling KS matrix computation for GTO

Gaussian basis sets (many terms analytic)

$$\psi_i(\mathbf{r}) = \sum_{\alpha} C_{\alpha i} \phi_{\alpha}(\mathbf{r}) \qquad \phi_{\alpha}(\mathbf{r}) = \sum_{m} d_{m\alpha} g_m(\mathbf{r}) \qquad g_m(\mathbf{r}) = x^{m_x} y^{m_y} z^{m_z} e^{-\alpha_m r^2}$$

% Pseudo potentials

Plane waves auxiliary basis for Coulomb integrals

Regular grids and FFT for the density

Sparse matrices (KS and P)

% Efficient screening

G. Lippert et al, Molecular Physics, 92, 477, 1997 J. VandeVondele et al, Comp. Phys. Comm.,167 (2), 103, 2005

業 Localised, atom-position dependent GTO basis

$$\varphi_{\mu}(\mathbf{r}) = \sum_{m} d_{m\mu} g_{m}(\mathbf{r})$$

***** Expansion of the density using the density matrix

$$n(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}^{*}(\mathbf{r})$$

Operator matrices are sparse

$$S_{\alpha\beta} = \int \varphi_{\alpha}(r) \varphi_{\beta}(r) dr$$

$$H_{\alpha\beta}^{S} \mu \nu \int \overline{\varphi}_{\alpha}(r) \nabla (\mu \nabla \varphi_{\beta} (r) (r) dr$$

$$H_{\mu\nu} = \int \varphi_{\mu}(\mathbf{r}) V(r) \varphi_{\nu}(\mathbf{r}) d\mathbf{r}$$

Cartesian Gaussian

$$g(\mathbf{r}, \mathbf{n}, \eta, \mathbf{R}) = (x - R_x)^{n_x} (y - R_y)^{n_y} (z - R_z)^{n_z} e^{-\eta (\mathbf{r} - \mathbf{R})^2}$$

 $l = n_x + n_y + n_z$ (l+1)(l+2)/2

Differential relations

$$\frac{\partial}{\partial R_i}|\mathbf{n}\rangle = 2\eta|\mathbf{n} + \mathbf{1}_i\rangle - n_i|\mathbf{n} - \mathbf{1}_i\rangle \qquad \qquad \frac{\partial}{\partial R_i}|\mathbf{n}\rangle = -\frac{\partial}{\partial r_i}|\mathbf{n}\rangle$$

Obara-Saika recursion relations
$$(\mathbf{0}_a | \mathcal{O}(\mathbf{r}) | \mathbf{0}_b)$$
 $(\mathbf{a} + \mathbf{1}_i | \mathcal{O}(\mathbf{r}) | \mathbf{b})$

Obara and Saika JCP 84 (1986), 3963

GTH_BASIS_SETS ; BASIS_MOLOPT ; EMSL_BASIS_SETS

$\begin{array}{c} 0 & 6-31 \\ p & \mathbf{SZ} \\ \end{array}$	Gx 6-31G* S XNOCO HT-G	TH SZV-MOLOF	PT-GTH-q6							
1 o b	6 1									
20_{5484}	0.6 ¹ 1700001	0.00183110	0.0000			O 6-311++G	3df3pd	6-311++G(3d	f,3pd)	
12.01	33306410855	4920.003950008	39993674393884	9273		9	1	×		
21.88	0449609484	1910.0683493019	536410924648709	2449		10061				
2324	964799993/3	434.232.043472	49232230070300	7083		8588.5000	0000	0.00189515		
16.0	88737666388	63450-12-3920613	3622 <i>1-</i> 03710300	7957		1297.2300	0000	0.01438590)	
. # 14	79963530 2977330880	0.02715833600	0.173039869300			299.2960	0000	0.07073200		
		-0 000255945800	0.009726110600			87.37710	000	0.24000100		
# 2	53961600	-0.11077750	0.07087430			25.67890	000	0.59479700		
ODZY	09993360 (P2 MQLO PT-	-0.14802630 -GTH2DZXB7MO	0.33975280 LOPT-GTH-96			3.740040	000	0.28080200		
4.0	913761809 <i>~</i> 1813043855	492 0 1510164	-0./2715860 5999 _0_000000	0000 _0 099567	9273 0 0000	1 0 1 3 1 1	000	0 11200000	0.00/511.40	
10277	-10194-9099. -120194-9099.	10100000000000000000000000000000000000	534/h0000000	0000 - 0.000007	273 0.0000	000042211750	000	0.11388900	0.03651140	
1 1,2,01	15954705542	1911.00000000019. ₁ Q.060190841200	100000000000000000000000000000000000000	LOOJ -0.301142	2449 0.0000	40808014897	154400	0.92081100	0.23/15300	
¹ ² 5.40	8150787385 8160787385			0.120927648700	,=0.1206197709	00 0 0681861	59300	-0.00327447	0.81970200	
$_{\#}$ 2.04	8398039874	0.118175889400	28.053732406400	0.231093670300	-0.2137194646	00 0.2905764	99200	1 00000000	1 0000000	
$0.6^{0.3}$	2381575582	0.462964485000	-0.572670666200	0.352639910300	-0.4736748584	.00 1.0633441	89500	1.00000000	1.0000000	
4 0.35	2316246455	0.450359782600	09486760006700	0.294708645200	0.4848483764	00 0.3076561	14200	1.00000000	1.00000000	
$1 0^{-14}$	2977330880	0.092715833600	0.387201458600	0.173039869300	0.7174659197	$\begin{array}{c} 00 & 0.3183468 \\ 2 & 2 & 1 \\ \end{array}$	34400	1.000000000	1.00000000	
9484	E-691 7666 60 -	-0.000255945800 0.00183110	0.003825849600	0.009726110600	0.0324989794	00-0.0057717 5.16000	36600	1.00000000		
# 825	.23495000	0.01395010				1 2 2 1 1				
	05469666073-	0.06844510	LOPI-GIH-qo			1.29200	000	1.00000000		
$\frac{1}{2027}$	3 63.300704 19	9382307098959	8460 0.000000	0000 0.00000	0000 -0.059	58569240 0.0)000000	0000.0 0000	000000	
20216.	897 54800 195	69 6 .4701 9300 78	339,0,0000000	$000_{4180676540}$	0000 - 0.1875	64900522250			$000000_{4807054}$	400
125.7	1996356393377 8150287385	7021358528988754	5709 8.900000	000000000000000000000000000000000000000	99990973784	60-57-281-60	<u> 99</u> <u>7</u> 00 <u>7</u>	00085234040	0000001861593	+00 600
10.10 2.04	3944356892	254 8 0 623244	28023742400409	29987639899998	0000010036203	9226159719	899999 9		0000005764992	200
-15.0.83	2081463920	59462964495006	349172670682000	0043507.0002806	009926992703	0016373604	999999	00018720000	000003344189	500
035	2,3,262,464,55	-0.14802630	0.186760006700	0.722792798300	0.2947086452	0.084500 0.4848483	200 76400 0	100000000.53050476470	$0 \ 0.3076561142$	00
10.14	297 185086 0	0009271.00666600) 003 7201458600	-0.521378340700	0.1730398693	00 0.7174659	19700 -0	.43618404370	0 0.3183468344	-00
¹ 0.44	6760918300 ·	-0.000255945800	0.003825849600	0.175643142900	0.0097261106	00 0.0324989	79400 0	.07332925950	0 -0.0057717366	00
1 2 2	1 1	1.00000000	1.0000000							
0.8	30000000	1.00000000								

8

GTO in CP2K

ᢟ The repository contains several GTO libraries

Cp2k/data/ALL_BASIS_SETSBASIS_RI_cc-TZALL_POTENTIALSBASIS_SETBASIS_ADMMBASIS_ZIJLSTRABASIS_ADMM_MOLOPTDFTBBASIS_LRIGPW_AUXMOLOPTECP_POTENTIALSBASIS_MOLOPTEMSL_BASIS_SETSBASIS_MOLOPT_UCLGTH_BASIS_SETS

GTH_POTENTIALS HFX_BASIS HF_POTENTIALS MM_POTENTIAL NLCC_POTENTIALS POTENTIAL README

dftd3.dat nm12_parameters.xml rVV10_kernel_table.dat t_c_g.dat t_sh_p_s_c.dat vdW_kernel_table.dat

Tools for the optimisation of GTO basis sets are available in cp2k, based on atomic and molecular electronic structure calculations

Pseudopotentials

GTH Pseudopotentials

Norm-conserving, separable, dual-space

影 Local PP : short-range and long-range terms

$$\begin{split} V_{\rm loc}^{\rm PP}(r) &= \sum_{i=1}^{4} C_i^{\rm PP} \left(\sqrt(2) \alpha^{\rm PP} r \right)^{(2i-2)} e^{-\left(\alpha^{\rm PP} r\right)^2} - \frac{Z_{\rm ion}}{r} {\rm erf} \left(\alpha^{\rm PP} r\right) \\ & \text{analytically} & \text{part of ES} \end{split}$$

Non-Local PP with Gaussian type projectors

$$V_{\rm nl}^{\rm PP}(\mathbf{r},\mathbf{r}') = \sum_{lm} \sum_{ij} \langle \mathbf{r} | p_i^{lm} \rangle h_{ij}^l \langle p_j^{lm} | \mathbf{r}' \rangle$$

$$\left\langle \mathbf{r} \mid p_i^{lm} \right\rangle = N_i^l Y^{lm}(\hat{r}) r^{(l+2i-2)} e^{-\frac{1}{2} \left(\frac{r}{r_l}\right)^2}$$

Goedeker, Teter, Hutter, PRB **54** (1996), 1703; Hartwigsen, Goedeker, Hutter, PRB **58** (1998) 3641 Scalar relativistic Few parameters

Accurate and

Transferable

Periodic system

$$E_{\rm ES} = \int V_{\rm loc}^{\rm PP}(\mathbf{r}) n(\mathbf{r}) d\mathbf{r} + 2\pi \Omega \sum_{\mathbf{G}} \frac{\tilde{n}^*(\mathbf{G}) \tilde{n}(\mathbf{G})}{G^2} + \frac{1}{2} \sum_{A \neq B} \frac{Z_A Z_B}{|\mathbf{R}_A - \mathbf{R}_B|}$$
total charge distribution
including n(r) and Z
$$n_{\rm tot}(\mathbf{r}) = n(\mathbf{r}) + \sum_{A} n_A(\mathbf{r})$$

$$n_A(\mathbf{r}) = -\frac{Z_A}{(r_A^c)^3} \pi^{-3/2} e^{\left(\frac{\mathbf{r}-\mathbf{R}_A}{r_A^c}\right)}$$

$$V_{\text{core}}^{A}(\mathbf{r}) = -\frac{Z_{A}}{|\mathbf{r} - \mathbf{R}_{A}|} \operatorname{erf}\left(\frac{|\mathbf{r} - \mathbf{R}_{A}|}{r_{A}^{c}}\right)$$

 $r_A^c = \sqrt{2} r_{\text{loc}A}^{\text{PP}}$

cancels the long range term of local PP

$$E_{\rm ES} = \int V_{\rm loc}^{\rm SR}(\mathbf{r})n(\mathbf{r}) + \frac{1}{2} \int \int \frac{n_{\rm tot}(\mathbf{r})n_{\rm tot}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}' \qquad \begin{array}{l} \mathbf{E}^{\mathsf{H}}[\mathbf{n}_{\rm tot}] \text{ long range} \\ \mathbf{smooth} \\ + \frac{1}{2} \sum_{A \neq B} \frac{Z_A Z_B}{|\mathbf{R}_A - \mathbf{R}_B|} \operatorname{erfc} \left[\frac{|\mathbf{R}_A - \mathbf{R}_B}{\sqrt{(r_A^c)^2 + (r_B^c)^2}} \right] - \sum_A \frac{1}{\sqrt{2\pi}} \frac{Z_A^2}{r_A^c} \\ \mathbf{F}^{\mathsf{ov}} \text{ short range, pair} \qquad \qquad \mathbf{E}^{\mathsf{self}} \end{array}$$

Long range term : Non-local Hartree potential

$$E^{\mathrm{H}}[n_{\mathrm{tot}}] = \frac{1}{2} \int \int \frac{n_{\mathrm{tot}}(\mathbf{r})n_{\mathrm{tot}}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$$

Orthogonal, unbiased, naturally periodic PW basis

Real Space Integration

Finite cutoff and simulation box define a real space grid

$$n(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r}) \to \sum_{\mu\nu} P_{\mu\nu} \bar{\varphi}_{\mu\nu}(\mathbf{R}) = n(\mathbf{R})$$

$$\hat{n}(\mathbf{G}) \to V_H(\mathbf{G}) = \frac{\hat{n}(\mathbf{G})}{G^2} \to V_H(\mathbf{R})$$

Numerical approximation of the gradient

 $n(\mathbf{R}) \to \nabla n(\mathbf{R})$

Screening

Truncation

 ε_{xc} and derivatives evaluated on the grid

$$v_{XC}[n](\mathbf{r}) \to V_{XC}(\mathbf{R}) = \frac{\partial \epsilon_{xc}}{\partial n}(\mathbf{R})$$

Real space integration

$$H_{HXC}^{\mu\nu} = \langle \mu | V_{HXC}(\mathbf{r}) | \nu \rangle \to \sum_{R} V_{HXC}(R) \varphi_{\mu\nu}'(R)$$

G. Lippert et al, Molecular Physics, 92, 477, 1997 J. VandeVondele et al, Comp. Phys. Comm.,167 (2), 103, 2005

Multiple Grids

Bulk Si, 8 atoms, a=5.43Å, $E_{cut} = 100$ Ry, $E_{rel} = 60$ Ry

		MULTIGRID I	NFO	
count for grid count for grid	1: 2:	2720 5000	cutoff [a.u.] cutoff [a.u.]	50.00 16.67
count for grid count for grid	3: 4:	2760 16	cutoff [a.u.] cutoff [a.u.]	5.56 1.85
total gridlevel co	ount :	10496		

Changing E_{cut} from 50 to 500 Ry

#	REL_CUTOFF =	= 60																	
#	Cutoff (Ry)	To	tal	Energy	(Ha)	NG o	n gric	1	NG on	grid	2	NG	on g	rid	3	NG	on	grid	4
	50.00	-32	.379	95329864	1		5048		5432	-			16				0		
	100.00	-32	. 380	9455763	1		2720		5000)			2760				16		
	150.00	-32	. 380	94554850	9		2032		3016				5432				16		
	200.00	-32	. 380	94554982	2		1880		2472	-			3384			27	60		
	250.00	-32	. 380	94554859	Э		264		4088	3			3384			27	60		
	300.00	-32	. 380	94554843	3		264		2456				5000			27	76		
	350.00	-32	. 380	94554846	5		56		1976				5688			27	76		
	400.00	-32	. 380	9455485	1		56		1976				3016			54	48		
	450.00	-32	. 380	9455485	1		Θ		2032	-			3016			54	48		
	500.00	-32	.380	94554850	9		Θ		2032)			3016			54	48		

GPW Functional

$$E^{\mathrm{el}}[n] = \sum_{\mu\nu} \mathcal{P}_{\mu\nu} \left\langle \varphi_{\mu} \left| -\frac{1}{2} \nabla^{2} + V_{\mathrm{loc}}^{\mathrm{SR}} + V_{\mathrm{nl}} \right| \varphi_{\nu} \right\rangle$$

+
$$2\pi\Omega \sum_{\mathbf{G}} \frac{\tilde{n}_{\mathrm{tot}}^{*}(\mathbf{G})\tilde{n}_{\mathrm{tot}}(\mathbf{G})}{\mathbf{G}^{2}} + \sum_{\mathbf{R}} \tilde{n}(\mathbf{R})V^{\mathrm{XC}}(\mathbf{R})$$

=
$$\sum_{\mu\nu} \mathcal{P}_{\mu\nu} \left(\left\langle \varphi_{\mu} \left| -\frac{1}{2} \nabla^{2} + V^{\mathrm{ext}} \right| \varphi_{\nu} \right\rangle + \sum_{\mathbf{R}} V_{\mu\nu}^{\mathrm{HXC}}(\mathbf{R})\varphi_{\mu\nu}'(\mathbf{R}) \right)$$

Linear scaling KS matrix construction

&FORCE_EVAL METHOD Quickstep

& DFT

BASIS_SET_FILE_NAME GTH_BASIS_SETS POTENTIAL FILE NAME GTH POTENTIALS LSD F MULTIPLICITY 1 CHARGE Ø **&MGRID** CUTOFF 300 REL CUTOFF 50 &END MGRID &**QS** EPS DEFAULT 1.0E-10 &END **OS &SCF** MAX_SCF 50 EPS_SCF 2.00E-06 SCF_GUESS ATOMIC &END SCF &XC **&XC_FUNCTIONAL** &PBE &END PBE &END XC_FUNCTIONAL

&XC_GRID XC_DERIV SPLINE2_smooth XC_SMOOTH_RH0 NN10 &END XC GRID &END XC &END **DFT &SUBSYS &CELL** PERIODIC XYZ ABC 8. 8. 8. &END CELL &COORD 0 0.000000 0.000000 -0.065587 0.000000 -0.757136 0.520545 Н 0.757136 Н 0.520545 0.000000 &END COORD &KIND H BASIS_SET DZVP-GTH-PBE POTENTIAL GTH-PBE-q1 &END KIND &KIND 0 BASIS_SET DZVP-GTH-PBE POTENTIAL GTH-PBE-q6 &END KIND &END **SUBSYS** &END FORCE_EVAL

Hard and Soft Densities

Formaldehyde

Solution ⇒ localized orbitals and PW PAW (PE Bloechl, PRB, 50, 17953 (1994))

Partitioning of the Density

$$n = \tilde{n} + \sum_{A} n_{A} - \sum_{A} \tilde{n}_{A}$$

$$n(\mathbf{r}) - \tilde{n}(\mathbf{r}) = 0$$

$$n_A(\mathbf{r}) - \tilde{n}_A(\mathbf{r}) = 0$$
 r $\in I$

$$\begin{array}{ccc} n(\mathbf{r}) & - & n_A(\mathbf{r}) = 0 \\ \tilde{n}(\mathbf{r}) & - & \tilde{n}_A(\mathbf{r}) = 0 \end{array} \right\} \mathbf{r} \in A$$

$$n_{A}(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu} \chi^{A}_{\mu} \chi^{A}_{\nu} \qquad \tilde{n}(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu} \tilde{\varphi}_{\mu} \tilde{\varphi}_{\nu} \to \sum_{\mathbf{G}} \hat{n}(\mathbf{G}) e^{i\mathbf{G}\cdot\mathbf{R}}$$

Gaussian Augmented Plane Waves

$$n_A(\mathbf{r}) = \sum_{\mu\nu} P_{\mu\nu} \chi^A_{\mu} \chi^A_{\nu}$$

 X_{μ} projection of φ_{μ} in Ω_{A} through atom-dependent d'

projector basis (same size)

$$\{p_{\alpha}\} \qquad \lambda_{\alpha} = k^{\alpha} \lambda_{min} \qquad \langle p_{\alpha} | \varphi_{\mu} \rangle = \sum_{\beta} d_{\mu\beta}^{\prime A} \langle p_{\alpha} | g_{\beta} \rangle$$

$$n_{A}(\mathbf{r}) = \sum_{\alpha\beta} \left[\sum_{\mu\nu} P_{\mu\nu} d_{\mu\alpha}^{\prime A} d_{\nu\beta}^{\prime A} \right] g_{\alpha}(\mathbf{r}) g_{\beta}(\mathbf{r}) = \sum_{\alpha\beta} P_{\alpha\beta}^{\prime A} g_{\alpha}(\mathbf{r}) g_{\beta}(\mathbf{r})$$

Density Dependent Terms: XC

Semi-local functionals like local density approximation, generalised gradient approximation or meta-functionals

$$\begin{array}{ll} \text{Gradient:} & \nabla n(\mathbf{r}) = \nabla \tilde{n}(\mathbf{r}) + \sum_{A} \nabla n_{A}(\mathbf{r}) - \sum_{A} \nabla \tilde{n}_{A}(\mathbf{r}) \\ & E[n] = \int \ V_{loc}(\mathbf{r})n(\mathbf{r}) & = \ \int \left\{ \tilde{V}_{loc}(\mathbf{r}) + \sum_{A} V_{loc}^{A}(\mathbf{r}) + \sum_{A} \tilde{V}_{loc}^{A}(\mathbf{r}) \right\} \\ & \times \ \left\{ \tilde{n}(\mathbf{r}) + \sum_{A} n_{A}(\mathbf{r}) - \sum_{A} \tilde{n}_{A}(\mathbf{r}) \right\} d\mathbf{r} \\ & = \int \left\{ \tilde{V}_{loc}(\mathbf{r})\tilde{n}(\mathbf{r}) + \sum_{A} V_{loc}^{A}(\mathbf{r})n_{A}(\mathbf{r}) - \sum_{A} \tilde{V}_{loc}^{A}(\mathbf{r})\tilde{n}_{A}(\mathbf{r}) \right\} \right\}$$

Density Dependent Terms: ES

Non local Coulomb operator

$$\mathbf{n^{0}(\mathbf{r})} = \sum_{A} \mathbf{n^{0}_{A}(\mathbf{r})} = \sum_{A} \left\{ \sum_{L} Q_{A}^{L} g_{A}^{L}(\mathbf{r}) \right\} \quad \begin{array}{l} \text{Compensation} \\ \text{charge} \end{array}$$

Same multipole expansion as the local densities

$$\mathcal{Q}_A^L = \int \left\{ n_A(\mathbf{r}) - \tilde{n}_A(\mathbf{r}) + n_A^Z(\mathbf{r}) \right\} r^l \mathcal{Y}_{lm}(\theta\phi) r^2 dr \sin(\theta) d\theta d\phi$$

$$V[\tilde{n} + \mathbf{n}^0] + \sum_A V[\mathbf{n}_A + \mathbf{n}_A^Z] - \sum_A V[\tilde{\mathbf{n}}_A + \mathbf{n}_A^0]$$

Interstitial region Atomic region

GAPW Functionals

$$E_{xc}[n] = E_{xc}[\tilde{n}] + \sum_{A} E_{xc}[n_{A}] - \sum_{A} E_{xc}[\tilde{n}_{A}]$$

$$E_{H}[n + n^{Z}] = E_{H}[\tilde{n} + \mathbf{n}^{0}] + \sum_{A} E_{H}[n_{A} + n_{A}^{Z}] - \sum_{A} E_{H}[\tilde{n}_{A} + \mathbf{n}^{0}]$$
on global grids
via collocation + FFT
Analytic integrals
Local Spherical Grids

Lippert et al., Theor. Chem. Acc. 103, 124 (1999); Krack et al, PCCP, **2**, 2105 (2000) Iannuzzi, Chassaing, Hutter, Chimia (2005); VandeVondele , Iannuzzi, Hutter, CSCM2005 proceedings

GAPW Input

&DFT		é	&SUBSYS
&QS			&KIND O
EXTRAPOLATIO	N ASPC		BASIS_SET DZVP-MOLOPT-GTH-q6
EXTRAPOLATIO	N_ORDER 4		POTENTIAL GTH-BLYP-q6
EPS_DEFAULT	1.0E-12		LEBEDEV_GRID 80
METHOD GAPW			RADIAL_GRID 200
EPS_DEFAULT	1.0E-12		&END KIND
QUADRATURE	GC_LOG		&KIND 01
EPSFIT	1.E-4		ELEMENT O
EPSIS0	1.0E-12	#	BASIS_SET 6-311++G2d2p
EPSRH00	1.E-8		BASIS_SET 6-311G**
LMAXN0	4		POTENTIAL ALL
LMAXN1	6		LEBEDEV_GRID 80
ALPHA0_H	10		RADIAL_GRID 200
&END QS			&END KIND

&END DFT

&END SUBSYS

Energy Functional Minimisation

$$C^* = \arg\min_C \left\{ E(C) : C^T S C = 1 \right\}$$

Standard: Diagonalisation + mixing (DIIS, Pulay, J. Comput. Chem. 3, 556,(1982); iterative diag. Kresse G. et al, PRB, 54(16), 11169, (1996))

Direct optimisation: Orbital rotations (maximally localised Wannier functions)

Linear scaling methods: Efficiency depends on sparsity of P (S. Goedecker, Rev. Mod. Phys. 71, 1085,(1999))

Traditional Diagonalisation

Eigensolver from standard parallel program library: SCALAPACK ${ m KC}={ m SC}arepsilon$

Transformation into a standard eigenvalues problem

Cholesky decomposition $\mathbf{S} = U^T U$ $\mathbf{C}' = U \mathbf{C}$

$$\mathbf{K}\mathbf{C} = U^T U \mathbf{C}\varepsilon \quad \Rightarrow \quad \left[(U^T)^{-1} \mathbf{K} U^{-1} \right] \mathbf{C}' = \mathbf{C}'\varepsilon$$

Diagonalisation of **K**' and back transformation of MO coefficients (occupied only (20%))

DIIS for SCF convergence acceleration: few iterations error matrix

 $\mathbf{e} = \mathbf{KPS} - \mathbf{SPK}$

scaling $(O(M^3))$ and stability problems

Orbital Transformation Method

Preconditioned OT

OT Performance

業 Use Inner and Outer loop

祭 Guaranteed convergence with CG + line search

Warious choices of preconditioners

% Limited number of SCF iterations

% KS diagonalisation avoided

Sparsity of S and H can be exploited

Sased on matrix-matrix and matrix-vector products

% Scaling O(N²M) in cpu and O(NM) in memory

Optimal for large system, high quality basis set

Refined preconditioner, most effective during MD of large systems with well conditioned basis sets

Schiffmann, VandeVondele, JCP 142 244117 (2015)


```
&SCF

EPS_SCF 1.01E-07

&OUTER_SCF

MAX_SCF 20

EPS_SCF 1.01E-07

&END OUTER_SCF

SCF_GUESS RESTART

MAX_SCF 20

&OT

MINIMIZER DIIS

PRECONDITIONER FULL_ALL

&END OT

&END SCF
```

Linear Scaling SCF

Based on sparse matrix matrix multiplications (iterative proc.)

$$P = \frac{1}{2} \left(I - \text{sign} \left(S^{-1} H - \mu I \right) \right) S^{-1}$$

Self consistent solution by mixing $H_{n+1}(P_{n+1})$ $\hat{H}_{n+1} = (1 - \alpha)\hat{H}_n - \alpha H_{n+1}$

Chemical potential by bisecting until

$$\mu_{n+1}$$
: $|\operatorname{trace}(P_{n+1}S) - N_{el}| < 1/2$

Largest O(N³) calculation with CP2K (~6000 atoms)

VandeVondele, Borstnik, Hutter; JCTC 10, 3566 (2012)

Sparse Matrix Library

DBCSR: Distributed Blocked Compressed Sparse Row

For massively parallel architectures

Optimised for 10000s of non-zeros per row (dense limit)

Stored in block form : atoms or molecules

Cannons algorithm: 2D layout (rows/columns) and 2D distribution of data

Homogenised for load balance

given processor communicates only with nearest neighbours transferred data decreases as number of processors increases

Millions of atoms

Bulk liquid water. Dashed lines represent ideal linear scaling.

Metallic Electronic Structure

$$E_{\text{band}} = \sum_{n} \frac{1}{\Omega_{\text{BZ}}} \int_{\text{BZ}} \varepsilon_{n\mathbf{k}} \Theta(\varepsilon_{n\mathbf{k}} - E_f) d^3 \mathbf{k} \quad \rightarrow \sum_{n} \sum_{k} w_{\mathbf{k}} \varepsilon_{n\mathbf{k}} \Theta(\varepsilon_{n\mathbf{k}} - E_f) d^3 \mathbf{k}$$

charge sloshing and exceedingly slow convergence

Wavefunction must be orthogonal to unoccupied bands close in energy

Siscontinuous occupancies generate instability (large variations in n(r))

Integration over k-points and iterative diagonalisation schemes

<u>Smearing & Mixing in G-space</u>

Mermin functional: minimise the free energy

$$F(T) = E - \sum_{n} k_B T S(f_n) \qquad S(f_n) = -[f_n \ln f_n + (1 - f_n) \ln(1 - f_n)]$$

Any smooth operator that allows accurate $S(f_n)$ to recover the T=0 result

$$f_n\left(\frac{\varepsilon_n - E_f}{kT}\right) = \frac{1}{\exp\left(\frac{\varepsilon_n - E_f}{k_{\rm B}T}\right) + 1}$$
 Fermi-Dirac

Trial density mixed with previous densities: damping oscillations

$$n_{m+1}^{\text{inp}} = n_m^{\text{inp}} + \mathbf{G}^I \mathcal{R}[n_m^{\text{inp}}] + \sum_{i=1}^{m-1} \alpha_i \left(\Delta n_i + \mathbf{G}^I \Delta \mathcal{R}_i \right)$$

residual

$$\mathcal{R}[n^{\mathrm{inp}}] = n^{\mathrm{out}}[n^{\mathrm{inp}}] - n^{\mathrm{inp}}$$

minimise the residual G preconditioning matrix damping low G

Iterative Improvement of the the n(r)

Rhodium: Bulk and Surface

Bulk: 4x4x4

Surface: 6x6 7 layers

Basis	PP	a ₀ [Å]	B[GPa]	E _s [eV/Å ²]	W _f [eV]
3s2p2df	17e	3.80	258.3	0.186	5.11
2s2p2df	9e	3.83	242.6	0.172	5.14
2sp2d	9e	3.85	230.2	0.167	5.20
spd	9e	3.87	224.4	0.164	5.15

576 Cu, nao=14400, Nelect.=6336, k of eigen-pairs=3768

nprocs	syevd	syevr	Cholesky					
32	106 (49%)	72 (40%)	38 (21%)					
64	69 (46%)	48 (37%)	34 (26%)					
128	41 (41%)	29 (34%)	23 (28%)					
256	35 (41%)	26 (34%)	24 (32%)					
Syevd: D&C								
Syevr: MRRR								

ELPA (http://elpa.rzg.mpg.de)

Improved efficiency by a two-step transformation and back transformation

Large metallic systems

hBN/Rh(111) Nanomesh 13x13 hBN on 12x12 Rh slab

Slab 12x12 Rh(111) slab, a_=3.801 Å, 1 layer hBN 13x13 4L: 576Rh + 169BN: Nao=19370 ; Nel=11144 7L: 1008Rh + 338BN: Nao=34996 ; Nel=19840

Structure opt. > 300 iterations => 1÷2 week on 512 cores

graph./Ru(0001) Superstructure 25x25 g on 23x23 Ru

2116 Ru atoms (8 valence el.) + 1250 C atoms, Nel=21928, Nao=47990 ;

~ 25 days per structure optimisation, on 1024 cpus

SCF for Metals

&**SCF** SCF GUESS ATOMIC MAX_SCF 50 EPS_SCF 1.0e-7 EPS_DIIS 1.0e-7 **&SMEAR** METHOD FERMI_DIRAC ELECTRONIC_TEMPERATURE 500. &END **SMEAR &MIXING** METHOD BROYDEN_MIXING ALPHA 0.6 BETA 1.0 NBROYDEN 15 &END **MIXING** ADDED_MOS 20 20 &END SCF

&XC &XC_FUNCTIONAL PBE &END &vdW_POTENTIAL DISPERSION_FUNCTIONAL PAIR_POTENTIAL &PAIR_POTENTIAL TYPE DFTD3 PARAMETER_FILE_NAME dftd3.dat REFERENCE_FUNCTIONAL PBE &END PAIR_POTENTIAL &END vdW_POTENTIAL &END XC